Investigator Details

<table>
<thead>
<tr>
<th>Last Name:</th>
<th>First:</th>
<th>Middle:</th>
<th>Email:</th>
<th>Department:</th>
<th>Phone / Fax:</th>
<th>After hrs. #:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Last Name:</th>
<th>First:</th>
<th>Middle:</th>
<th>Email:</th>
<th>Department:</th>
<th>Phone:</th>
<th>After hrs. #:</th>
</tr>
</thead>
</table>

Species Information

<table>
<thead>
<tr>
<th>Species (common names):</th>
<th>Number:</th>
<th>Source:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhesus monkey</td>
<td>30</td>
<td>CRPRC</td>
</tr>
</tbody>
</table>

Project Title

Effects of formula protein source on infant growth, protein and glucose metabolism

Overnight Housing Location

- CRPRC
- Day use only

Animals Maintenance

- Animals will be maintained by: [x] Vivarium [] Investigator
- (If investigator maintained, attach husbandry SOP’s.)

Procedures

The purpose of this project is to study the effect of formula protein source on protein and glucose metabolism in infants. Infant monkeys will be exclusively breast-fed or fed formula (commercially available) containing different protein sources for 4 months. Weight and length will be assessed at birth and monthly, food intake will be recorded daily and blood will be drawn at birth and bimonthly for CBC and further analysis. Glucose tolerance tests will be conducted at 1 and 3 mo.

Special Husbandry Requirements

Animals will be breast-fed, or fed experimental infant formula from birth to 4 months. No solid food will be given during this time. They will be housed in individual isolettes from birth to 1 mo and pair-caged for the duration of the study.

Other Instructions for Animal Care Staff

- Sick Animals: [] Call Investigator
- [] Clinician to treat
- [] Terminate
- [] Necropsy

- Dead Animals: [] Call Investigator
- [] Save for Investigator
- [] Bag for disposal
- [] Necropsy

- Pest Control: [x] Call Investigator
- [] OK to use pesticides
- [] No Pesticides in animal area

Hazardous Materials (only if in the animal room)

- Infectious Agents? [] Yes [x] No
- Radioisotopes? [] Yes [x] No
- Chemical Carcinogens? [] Yes [x] No
- Toxic Chemicals? [] Yes [x] No

University of California, Davis
Printed 11/19/2003 8:39 AM Page 1
Summary of Procedures:

a) Briefly describe the overall intent of the study. Include in your description a statement of your hypothesis, the objectives and significance of the study. Your target audience is a faculty member from a discipline unrelated to yours. Do not use jargon.

Formula-fed infants consistently weigh more than breast-fed infants, suggesting specific effects of infant formula components on intermediary metabolism. Some studies have observed that formula-fed infants (3-6 mo) have enhanced insulin response to a meal compared to breast-fed infants while blood glucose levels are similar suggesting insulin resistance (an abnormally low response of the target cells to insulin) and these differences still exist at 9 mo. Previously we have observed that infant monkeys at 1 and 2 mo have higher fasting glucose and insulin than formula-fed infants; however, this difference disappears by 3 mo of age. While insulin response to a glucose load at 2 mo of age was not different between breast-fed infants and infants fed a whey-predominant infant formula, infants fed soy formula had a less robust response, suggesting that protein source may potentially play a role in modulating glucose metabolism.

Whey-predominant infant formulas have recently become more frequently used than the “classical” casein-predominant formulas. In addition, some modern whey-predominant formulas now contain novel milk protein fractions that make the whey protein composition of the formula more similar to that of human milk whey. These protein sources lead to pronounced differences in amino acid composition of the formulas, particularly in the branched-chain amino acids (BCAA), which in itself may affect insulin and glucose metabolism in infants. In a recent infant rhesus monkey study we performed, the BCAA content of the formulas did not appear to explain the pronounced differences in metabolic response to various infant formulas that we have observed. It is therefore important to further delineate the differences in formula protein composition that explain the different responses observed in insulin and glucose metabolism.

The increase in prevalence of atopic disease has encouraged the use of hydrolyzed infant formula; however, clinical studies evaluating the metabolic consequences of consumption of this type of diet have been very limited. The limited studies conducted in term infants have observed no difference in weight gain between infants fed standard infant formula and infant formula that has been extensively hydrolyzed through 4 mo of age; however, several plasma amino acids and serum albumin were lower in infants fed hydrolyzed infant formula. To our knowledge, there is little information available in human infants as to the consequences of a hydrolyzed protein diet on parameters of glucose metabolism. However, the enzymatic hydrolysis of casein may produce peptides that are similar in structure to insulin and as gut closure is latent in formula-fed infants, these casein peptides may be absorbed and therefore play a physiological role in modulating glucose metabolism during infancy. In a recent study we conducted in human infants, infants fed hydrolysate formula had very different plasma amino acid profiles and BUN than infants fed regular formula. However, long-term or short-term endocrine response to feeding was not studied, nor was glucose (or lactose) tolerance. We therefore find it important to study these outcomes in our infant rhesus monkey model, as we are able to draw blood samples frequently and also perform glucose tolerance tests and measure hormonal response to feeding. As a corollary, we will also assess circulating levels of liver enzymes, as these have recently been found to be significantly affected by diet, possibly reflecting early regulation (imprinting?) of liver metabolism by diet.
b) Procedures employed in this project:

Please check the appropriate boxes if any of these procedures will be employed in your project:

- Monoclonal Antibody Production **
- Polyclonal Antibody Production **
- LD 50 or ID50 studies.
- Special diets; food or water treatment.
- Food or water restriction
- Non-recovery surgical procedures
- Survival surgical procedures
- Induced illness, intoxication, or disease
- Death as an endpoint (see i below)
- catheters, blood collection, intubation
- Multiple survival surgery
- Trapping, banding or marking wild animals
- Prolonged restraint (8 hrs+)
- Behavioral modification.
- Fasting prior to a procedure.
- Aversive conditioning.

** If this protocol only describes antibody production, you may use the attached antibody production page in lieu of completing section c below.

c) Describe the use of animals in your project in detail, with special reference to any of procedures checked above. Include any physical, chemical or biological agents that may be administered. List each study group, and describe all the specific procedures that will be performed on each animal in each study group. Use terminology that will be understood by individuals outside your field of expertise. (Note: This cell will expand to whatever length you require. You may make this section as long as you wish, but try to be concise. Some projects may require one or two pages.)

Newborn rhesus monkeys will be removed from their mothers and housed individually in incubators for their first month of life. Subsequently, they will be pair-caged for the duration of the study and be exclusively fed experimental infant formulas or breast-fed from birth to 4 months of age. The formulas are comprised of:

- Group 1: Whey-predominant
- Group 2: Casein-predominant
- Group 3: Whey-hydrolysate
- Group 4: Casein-hydrolysate
- Group 5: Breast-fed control

The study will begin at birth and continue until 4 months of age. Food intake will be recorded daily. All animals will be fasted for exactly 2 hours prior to blood draw. Blood from the femoral vein will be collected (1 cc into a grey-top Vacutainer; 1 cc into a heparinized Vacutainer; 2 cc into an anticoagulant-free Vacutainer, and 0.5cc into a purple microtainer) at birth and every month until 4 months of age for CBC analysis at the primate center (no FACS analysis) and our further laboratory analysis. Glucose tolerance tests will be administered at 1 and 3 mo. Infants will be fasted for exactly 2 hours and 0.5 ml of blood will be obtained in grey-top Vacutainers. Infants will be oro-gastrically intubated with glucose in water (1 mg/kg body weight) and 0.5 ml of blood will be obtained in grey-top Vacutainers 30, 60, 90 and 120 minutes after intubation.

Body weights and crown-rump measurements will be recorded monthly.

Dams of the breast fed infants will be anesthetized with ketamine, 10mg/kg IM, monthly to facilitate weighing and measuring their infants.

All blood draw volumes will comply with the CNPRC blood draw guidelines.

d) Study Groups and Numbers: Define, in the form of a table, the numbers of animals to be used in each experimental group described above. The table may be presented on a separate page as an attachment to this protocol if you prefer. The Normal format should be three columns: Study Group, Procedure, Number of animals. The number of rows should follow from the number of study groups; you may add as many rows as you require. The chart must fully account for the number of animals you intend to use under this protocol. Assign each group to an invasiveness category according to the chart below.

<table>
<thead>
<tr>
<th>Group</th>
<th>Procedures / Drugs</th>
<th>Number of Animals</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fasted, blood drawn, oral gavage (2)</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Fasted, blood drawn, oral gavage (2)</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Fasted, blood drawn, oral gavage (2)</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Fasted, blood drawn, oral gavage (2)</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Fasted, blood drawn, oral gavage (2)</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>
Categories of invasiveness

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Little or no discomfort or stress
Examples: domestic flocks or herds being maintained in simulated or actual commercial production management systems; the short-term and skillful restraint of animals for purposes of observation or physical examination; blood sampling; injection of material in amounts that will not cause adverse reactions by the following routes: intravenous, subcutaneous, intramuscular, intraperitoneal, or oral. |
| 2 | Minor stress or pain of short duration
Examples: cannulation or catheterization of blood vessels or body cavities under anesthesia; minor surgical procedures under anesthesia, such as biopsies or laparoscopy; short periods of restraint beyond that required for simple observation or examination, but consistent with minimal distress |
| 3 | Moderate to severe distress
Examples: major surgical procedures conducted under general anesthesia, with subsequent recovery; prolonged (several hours or more) periods of physical restraint; induction of behavioral stresses such as maternal deprivation |
| 4 | Severe pain near, at or above the pain tolerance threshold
Examples: exposure to noxious stimuli or agents whose effects are unknown; exposure to drugs, chemicals, or infectious agents at levels that markedly impair physiological systems and which cause death, severe pain, or extreme distress: Surgical experiments which have a high degree of invasiveness. |

Further descriptions of these categories are included in the instructions following this document.

e) Rationale for species and numbers: How did you determine that 1) the species choice was appropriate and 2) the number of animals in each study groups was the minimum number necessary to achieve sound scientific results?

The rhesus monkey has many similarities in milk profiles and gastrointestinal function with human infants. Additionally, the period of lactation is similar to that of humans and unlike other animal models, no special modifications of infant formula are needed in order to maintain their long-term health. This makes this model ideal for assessing the effects of dietary components on infant health.

Due to previous research in this area, we have determined that 6 animals/group gives acceptable standard deviations as a function of inter-animal variability.

f) Surgery: If the project involves survival surgery, where will the surgery be conducted?

Building: Room:

Who will be the surgeon?

g) Anesthetics, Analgesics, Tranquilizers, Neuromuscular blocking agents:

Post procedural analgesics should be given whenever there is possibility of pain or discomfort that is more than slight or momentary. If postoperative analgesics are not to be given, justify the practice under part (i) below.

Provide the following information about any of these drugs that you intend to use in this project.

<table>
<thead>
<tr>
<th>Species</th>
<th>Drug</th>
<th>Dose (mg/kg)</th>
<th>Route</th>
<th>When and how often will it be given?</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. mulatta</td>
<td>ketamine</td>
<td>10</td>
<td>IM</td>
<td>As needed by vet</td>
</tr>
</tbody>
</table>

h) Neuromuscular blocking agents can conceal inadequate anesthesia and therefore require special justification. If you are using a neuromuscular blocking agent, please complete the following:

Why do you need to use a neuromuscular blocking agent?
What physiologic parameters are monitored during the procedure to assess adequacy of anesthesia?

Under what circumstances will incremental doses of anesthetics-analgesics be administered?

i) Adverse effects:
Describe any potential adverse effects of the experiment on the animals (such as pain, discomfort; reduced growth, fever, anemia, neurological deficits; behavioral abnormalities or other clinical symptoms of acute or chronic distress or nutritional deficiency)

- Aspiration pneumonia for oral gastric tube feeding
- Pain due to blood draws
- Acute distress due to short-term restraint
- Hematoma due to blood draws

How will the signs listed above be ameliorated or alleviated? If signs are not to be alleviated or ameliorated by means of post-operative analgesics or other means, explain why this is necessary.

- Failure to thrive will result in removal of animal from project
- Aspiration pneumonia will be treated by vet staff as needed
- Unusual pain or hematoma will be assessed and treated by vet staff as needed

Note: if any unanticipated adverse effects not described above do occur during the course of the study, a complete description of those effects and the steps taken to mitigate them must be submitted to the committee as an amendment to this protocol.

Is death an endpoint in your experimental procedure? [] Yes [X] No

(Note: "Death as an endpoint" refers to acute toxicity testing, assessment of virulence of pathogens, neutralization tests for toxins, and other studies in which animals are not euthanized, but die as a direct result of the experimental manipulation). If death is an endpoint, explain why it is not possible to euthanize the animals at an earlier point in the study. If you can euthanize the animals at an earlier point, describe the clinical signs which will dictate that an animal will be euthanized.

j) Literature search for alternatives and unnecessary duplication:

This section is specifically required by Federal law. You are required to conduct a literature search to determine that either 1) there are no alternative methodologies by which to conduct this study, or 2) there are alternative methodologies, but these are not appropriate for your particular study. “Alternative methodologies” refers to reduction, replacement, and refinement (the three R’s) of animal use, not just animal replacement. You must also show that the study is not unnecessarily duplicative of other studies.

What was the date on which you conducted this search? 3/03

List the databases searched or other sources consulted (there should be more than one). Include the years covered by the search.

<table>
<thead>
<tr>
<th>Database Name</th>
<th>Years Covered</th>
<th>Keywords / Search Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medline/Biosys</td>
<td>1990-2003</td>
<td>Formula, hydrolysate, infants, children</td>
</tr>
<tr>
<td>Pub med</td>
<td>1975-2003</td>
<td>Formula, hydrolysate, infants, children</td>
</tr>
</tbody>
</table>
What were your findings with respect to alternative methodologies?

Reduction: Due to our previous research in this area, we have determined that 6 animals/group will give us acceptable standard deviation.

Replacement: The rhesus monkey has many similarities in milk profile as well as gastrointestinal function with human infants. Additionally, the period of lactation is similar to that of humans. Unlike other animal models, no special modifications of infant formula are needed in order to maintain their long-term health. This makes this model ideal for assessing the effects of dietary components on human infant health without having to use human infants.

Refinement: This protocol allows us to use the fewest number of animals to determine significance of outcome variables.

Has this study been previously conducted? [] Yes [X] No

If the study has been conducted previously, explain why it is scientifically necessary to replicate the experiment.

NA

k) Disposition of animals: At what point in the study, if any, will the animals be euthanized?

NA

I) Methods of euthanasia: Even if your study does not involve killing the animals, you should show a method that you would use in the event of unexpected injury or illness. If anesthetic overdose is the method, show the agent, dose, and route.

<table>
<thead>
<tr>
<th>Species</th>
<th>Method</th>
<th>Drug</th>
<th>Dose (mg/kg)</th>
<th>route</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. mulatta</td>
<td>overdose</td>
<td>pentobarbital</td>
<td>60mg /kg</td>
<td>IV</td>
</tr>
</tbody>
</table>

m) Surplus animals: What will you do with any animals not euthanized at the conclusion of the project?

Returned to the colony
n) Project Roster: Please provide the names of all the individuals who will work with animals on this project. This page will not be made available to the public. Give either the University Employee ID # or a valid UC Davis email address so that we can document training and occupational health compliance for regulatory agencies. Include all investigators, student employees, post-doctoral researchers, staff research associates, post-graduate researchers and laboratory assistants who will actually work with the animals. You don't need to include the staff of the vivarium in which your animals will be housed.

The principal investigator is responsible for keeping this roster current. If any staff is added or subtracted from this project, you must amend the protocol by sending the campus veterinarian a memo describing any changes.

<table>
<thead>
<tr>
<th>Last Name</th>
<th>First Name</th>
<th>Middle Name</th>
<th>UC ID Number or SSN</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Occupational Health Program:

Supervisors must enroll their employees in the campus Occupational Health Program if the workers are at increased risk of illness or injury (such as allergy, physical injury, or infectious disease) because of their work. Enroll workers by having them complete an "Animal Contact History Form", available from Employee Health Services (phone 752-2330). For further information, visit our web site at http://clueless.ucdavis.edu/health/ or read the UC Davis Policy & Procedure Manual 290-25.

Training:

Supervisors are responsible for insuring that their employees are adequate trained, both in the specifics of their job and in the requirements of the Federal Animal Welfare Act. EH&S offers free, basic wet labs in laboratory animal handling and techniques, and lecture format classes in the requirements of the Animal Welfare Act. To schedule a class for your unit, contact EH&S at 2-2364. Autotutorials are also available on the world wide web at http://clueless.ucdavis.edu/.
Assurances for the Humane Care and Use of Vertebrate Animals:
Principal Investigator's Statement:

I have read and agree to abide by the UC Davis Policy and Procedure Manual section 290-30 (Animal Use and Care). This project will be conducted in accordance with the ILAR Guide for the Care and Use of Laboratory Animals, and the UC Davis Animal Welfare Assurance on file with the US Public Health Service. (These documents are available from the Campus Veterinarian and at http://ehs.ucdavis.edu/). I will abide by all Federal, state and local laws and regulations dealing with the use of animals in research.

I will advise the Animal Use and Care Administrative Advisory Committee in writing of any significant changes in the procedures or personnel involved in this project.

______________________________ __________________________ __________
Principal Investigator Rank / Title Date

** Conditions necessary for Committee Approval:

Final Disposition of this protocol:

[] Approved
[] Not Approved
[] Withdrawn by Investigator

Date of Action: _____ / _____ / _____

I verify that the Institutional Animal Care and Use Committee of the University of California, Davis, acted on this protocol as shown above.

______________________________ ________________
Campus Veterinarian Date