Investigator

Last Name:
First:
Middle:
email:
Department:
Phone / Fax:
After hrs. #:

Contact

Last Name:
First:
Middle:
email:
Department:
Phone:
After hrs. #:

Species (common names):
Rhesus macaques

Number:
18

Source:

Project Title
Effect of interferon gamma (IFN-γ)-induced inflammation on SIV pathogenesis

Overnight housing location:
CNPRC

Day use:
CNPRC

Animals will be maintained by:
[x] Vivarium [] Investigator (If investigator maintained, attach husbandry SOP's.)

Procedures: Provide a one or two sentence layman's description of the procedures employed on the animals in this project. This information will help the animal care staff understand any conditions they may encounter while caring for your animals.

The relative balance between non-specific IFN-g driven inflammation and SIV-specific T cell IFN-g responses determines challenge outcome after SIV inoculation. The current study will examine the effect of various anti-inflammatory drugs on SIV challenge outcome. A total of 18 rhesus macaques will be inoculated intravenously with SIVmac. There will be 3 different treatment groups with 6 animals each. Animals in groups 1-3 will be treated for 2 weeks before and 2 weeks after SIV inoculation with 1) prednisolone, 2) anti-TNF-alpha. The 6 animals in group 3 will be treated with saline only. All animals will be monitored for 6 months post-inoculation, and virological and immunological parameters will be measured.

Special Husbandry Requirements: Describe any special requirements your animals have with respect to food, water, temperature, humidity, light cycles, caging type, bedding, or any other conditions of husbandry.

Infectious housing after SIV inoculation

Other instructions for animal care staff: (check applicable entries)

Sick Animals
[x] Call Investigator [x] Call Investigator
[x] Clinician to treat [x] Save for Investigator
[] Terminate [] Bag for disposal
[x] Necropsy [x] Necropsy

Dead Animals

Pest Control
[x] Call Investigator
[x] OK to use pesticides
[] No Pesticides in animal area

Hazardous Materials (only if in the animal room):

Infectious Agents? [x] Yes [] No Agent(s): Simian immunodeficiency virus SIVmac

Radioisotopes? [] Yes [x] No Agent(s):

Chemical Carcinogens? [] Yes [x] No Agent(s):

Toxic Chemicals? [] Yes [x] No Agent(s):
Summary of Procedures:

a) Briefly describe the overall intent of the study. Include in your description a statement of your hypothesis, the objectives and significance of the study. Your target audience is a faculty member from a discipline unrelated to yours. Do not use jargon.

Objective: Interferon gamma (IFN-γ) is critical cytokine for the development of effective anti-SIV immunity. At the same time, IFN-γ induces an inflammatory response in the host after pathogen encounter. Thus, the relative balance between non-specific IFN-γ driven inflammation and SIV-specific T cell IFN-γ responses determines challenge outcome after SIV inoculation. Modulation of the IFN-γ response by anti-inflammatory drugs before SIV inoculation might provide a mean to avoid the inflammatory response that promotes SIV replication and thus, should result in better clinical outcome. Prednisolone and anti-TNF alpha (tumor necrosis factor) are commonly used as anti-inflammatory drugs in treatment of inflammation-driven diseases, like e.g. rheumatoid arthritis (FDA approved). **Hypothesis:** It is hypothesized that pretreatment of rhesus macaques with anti-inflammatory drugs, such as anti-TNF alpha and prednisolone, will reduce IFN-γ driven inflammation, and thus, reduce SIV replication. It is proposed to use 2 different drugs because the TNF alpha inhibiting drug has a more narrow, but rather defined acting mechanism, whereas the mechanisms by which prednisolone reduces inflammation are numerous and thus broader, but not as well defined. **Experimental Design:** Eighteen juvenile rhesus macaques will be inoculated intravenously with 10^3 TCID_{50} SIVmac and monitored for 6 months. The animals will be divided into 3 groups of 6 monkeys each. All monkeys will be treated daily for 2 weeks prior to and 2 weeks after SIV inoculation: animals in group 1 with prednisolone (intramuscularly), monkeys in group 2 with anti-TNF alpha / Enbrel® (subcutaneously), animals in group 3 will receive sq placebo (saline) injections only. Baseline blood and lymph node biopsy samples will be obtained one month prior to treatment start. Blood samples to monitor SIV infection and host immune responses will be collected on the day of challenge, and at weeks 1, 2, and 4 post-challenge, and monthly thereafter. A second lymph node biopsy sample will be obtained at week 2 post-challenge. Samples will be analyzed for plasma and tissue viral (SIV) RNA, CBC, and a blood chemistry panel. Immunological assays include T cell proliferation, 4-color flow analysis to determine lymphocyte subsets and their activation status, IFN-γ ELISPOT responses and cytokine mRNA measurements. All animals will be euthanized at 24 weeks post-challenge. **Data Analysis and Significance:** The animals will be grouped according to the treatment they received prior to SIV inoculation. The primary endpoint will be a comparison of plasma viral RNA levels in the 3 treatment groups. In addition, CD4 T cell counts will be evaluated as a diagnostic marker for SIV disease progression. SIV-specific IFN-γ responses will be assessed in blood (PBMC) and lymph node tissues to determine how pretreatment with the anti-inflammatory drugs reduced the IFN-γ driven inflammation and thus, virus replication. The results may have important implication for the modulation of host immune responses in HIV-infected patients. In people that are frequently exposed to HIV, treatment with immunomodulatory drugs that can minimize inflammation may reduce the chance of acquiring the infection.
b) Procedures employed in this project:

Please check the appropriate boxes if any of these procedures will be employed in your project:

- [] Monoclonal Antibody Production **
- [] Polyclonal Antibody Production **
- [] LD 50 or ID50 studies.
- [] catheters, blood collection, intubation
- [] Prolonged restraint (8 hrs+)
- [] Fasting prior to a procedure.
- [] Food or water restriction
- [] Non-recovery surgical procedures
- [] Survival surgical procedures
- [] Multiple survival surgery
- [] Behavioral modification.
- [] Aversive conditioning.
- [] Special diets; food or water treatment.
- [] Induced illness, intoxication, or disease
- [x] Death as an endpoint (see i below)
- [x] Trapping, banding or marking wild animals

** If this protocol only describes antibody production, you may use the attached antibody production page in lieu of completing section c below.

c) Describe the use of animals in your project in detail, with special reference to any of procedures checked above. Include any physical, chemical or biological agents that may be administered. List each study group, and describe all the specific procedures that will be performed on each animal in each study group. Use terminology that will be understood by individuals outside your field of expertise.

(Note: This cell will expand to whatever length you require. You may make this section as long as you wish, but try to be concise. Some projects may require one or two pages.)

The study will use a total of 18 juvenile colony bred rhesus macaques that will be infected intravenously with 10^5 TCID₅₀ of SIVmac. Prior to inoculation with SIVmac, animals will be pretreated with anti-inflammatory drugs for a total of 14 days, and this treatment will continue for the first 2 weeks after SIV inoculation. For this purpose, the animals will be divided into 3 groups of 6 monkeys each:

Group A: Prednisolone will be administered by intramuscular injection (2.5 mg/animal/day) in a total volume of 1 ml.

Group B: Animals in Group 2 will receive anti-TNF alpha/Enbrel treatment twice a week (subcutaneous injection, 2.5 mg/animal).

Group C: Monkeys in Group 3 receive saline injections (1ml) given intramuscularly every day. Daily i.m. injections as proposed for animals in Group A are more stressful to the animal than sq injections twice a week as proposed for monkeys in Group B. Thus, we choose daily i.m. injections for the placebo group.

Blood samples (10 ml each) from all animals will be collected 1 month prior to treatment start, on the day of SIV challenge, and on days 7, 14, 28 post-challenge, and monthly thereafter. In addition, inguinal lymph node biopsy samples will be collected one month prior to treatment start, and at week 2 post-challenge. Samples will be used to monitor SIV replication in blood and tissue samples and to assess various host immune responses. Six months after SIV inoculation, all animals will be euthanized.

All animals will have weekly weight determinations according to CNPRC guidelines. CNPRC staff will observe the specially housed, infected animals. All animals will be euthanized 6 months after SIV inoculation, and blood and lymphoid tissues will be collected. Animals will be euthanized according to the CNPRC guidelines “Criteria for euthanasia of retrovirus infected macaques”. A complete necropsy will be performed for each animal and peripheral and lymphoid tissues will be prepared for histological, immunohistochemical, flow cytometric, bDNA, and PCR analysis.

Note:
The proposed doses for prednisolone and Enbrel are based on doses recommended for use in a 70 kg human male. Animals will be fasted prior to blood collections and anaesthetized for blood draws (ketamine) and lymph node biopsies (Telazol). Blood volumes will be adjusted for each animal as to not to exceed the maximum allowable blood volume of 12.5 ml/kg/month.
The animals do not need to be sedated for prednisolone or Enbrel treatment.

Lymph node biopsy: After anesthesia (medetomidine), the surgical site will be prepared and the skin over the node will be incised with a sterile scalpel blade. Once the node is removed by a combination of blunt and sharp dissection, the skin will be closed using suture and/or sterile surgical adhesive. Post-procedure analgesics will be applied at the veterinarian’s discretion, generally ketoprofen is given once a day for a total of 3 days.

d) Study Groups and Numbers: Define, in the form of a table, the numbers of animals to be used in each experimental group described above. The table may be presented on a separate page as an attachment to this protocol if you prefer. The Normal format should be three columns: Study Group, Procedure, Number of animals. The number of rows should follow from the number of study groups; you may add as many rows as you require. The chart must fully account for the number of animals you intend to use under this protocol. Assign each group to an invasiveness category according to the chart below.

<table>
<thead>
<tr>
<th>Group</th>
<th>Procedures / Drugs</th>
<th>Number of Animals</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Animals will be treated daily for 2 weeks prior to and 2 weeks after SIV inoculation.</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Animals will receive anti-TNF alpha/Enbrel treatment twice a week.</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Animals will receive saline injections (1ml) given intramuscularly every day.</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>
after SIV inoculation with prednisolone (i.m./ daily/ 2.5 mg). All 6 animals will be inoculated intravenously with \(10^3\) TCID\(_{50}\) of SIVmac. Pretreatment and post-treatment phlebotomy to measure status of SIV infection. Lymph node biopsies will be performed at 1 month prior and 2 weeks after SIVmac inoculation. Necropsy at 6 months after SIVmac infection.

2 Animals will be treated twice a week for 2 weeks prior to and 2 weeks after SIV inoculation with Enbrel (s.c./ 2.5 mg). with anti-TNF-a. All 6 animals will be inoculated intravenously with \(10^3\) TCID\(_{50}\) of SIVmac. Pretreatment and post-treatment phlebotomy to measure status of SIV infection. Lymph node biopsies will be performed at 1 month prior and 2 weeks after SIVmac inoculation. Necropsy at 6 months after SIVmac infection.

3 Animals will be treated daily for 2 weeks prior to and 2 weeks after SIV inoculation with i.m. saline injections (1 ml). All 6 animals will be inoculated intravenously with \(10^3\) TCID\(_{50}\) of SIVmac. Pretreatment and post-treatment phlebotomy to measure status of SIV infection. Lymph node biopsies will be performed at 1 month prior and 2 weeks after SIVmac inoculation. Necropsy at 6 months after SIVmac infection.

Categories of invasiveness

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Little or no discomfort or stress
Example: domestic flocks or herds being maintained in simulated or actual commercial production management systems; the short-term and skillful restraint of animals for purposes of observation or physical examination; blood sampling; injection of material in amounts that will not cause adverse reactions by the following routes: intravenous, subcutaneous, intramuscular, intraperitoneal, or oral.

| 2 | Minor stress or pain of short duration
Example: cannulation or catheterization of blood vessels or body cavities under anesthesia; minor surgical procedures under anesthesia, such as biopsies or laparoscopy; short periods of restraint beyond that required for simple observation or examination, but consistent with minimal distress.

| 3 | Moderate to severe distress
Example: major surgical procedures conducted under general anesthesia, with subsequent recovery; prolonged (several hours or more) periods of physical restraint; induction of behavioral stresses such as maternal deprivation.

| 4 | Severe pain near, at or above the pain tolerance threshold
Example: exposure to noxious stimuli or agents whose effects are unknown; exposure to drugs, chemicals, or infectious agents at levels that markedly impair physiological systems and which cause death, severe pain, or extreme distress; Surgical experiments which have a high degree of invasiveness.

Further descriptions of these categories are included in the instructions following this document.

e) **Rationale for species and numbers**: How did you determine that 1) the species choice was appropriate and 2) the number of animals in each study groups was the minimum number necessary to achieve sound scientific results?

SIV infection of nonhuman primates remains the optimal model for studying HIV immunopathogenesis and for testing novel therapeutic strategies. As a pilot project, the results of this study could suggest novel approaches for future non-human primate and human clinical trials. The animal number in each group is needed to get sufficient data that allow the detection of differences between the various treatment groups (see Parker et al., J. Virol. (2001), 75:11234).

f) **Surgery**: If the project involves survival surgery, where will the surgery be conducted?

Building:
Room:
Who will be the surgeon?

g) **Anesthetics, Analgesics, Tranquilizers, Neuromuscular blocking agents**:
Post procedural analgesics should be given whenever there is possibility of pain or discomfort that is more than slight or momentary. If postoperative analgesics are not to be given, justify the practice under part (i) below.

Provide the following information about any of these drugs that you intend to use in this project.

<table>
<thead>
<tr>
<th>Species</th>
<th>Drug</th>
<th>Dose (mg/kg)</th>
<th>Route</th>
<th>When and how often will it be given?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhesus macaques</td>
<td>telazol</td>
<td>5 mg/kg</td>
<td>IM</td>
<td>before biopsy procedure</td>
</tr>
<tr>
<td>Drug</td>
<td>Dose</td>
<td>Route</td>
<td>Timing</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------</td>
<td>-------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>Atipamezole</td>
<td>0.15 mg/kg</td>
<td>IM</td>
<td>right after biopsy</td>
<td></td>
</tr>
<tr>
<td>Rhesus macaques</td>
<td>Ketoprofen</td>
<td>2 mg/kg</td>
<td>IM</td>
<td>Once a day 3 days after biopsy procedure</td>
</tr>
<tr>
<td>Rhesus macaques</td>
<td>Buprenorphine</td>
<td>0.1-0.3 mg/kg</td>
<td>IM</td>
<td>BID for 3 days, discretion of CNPRC vets</td>
</tr>
<tr>
<td>Rhesus macaques</td>
<td>ketamine</td>
<td>10 mg/kg</td>
<td>IM</td>
<td>Prior to all procedures</td>
</tr>
</tbody>
</table>

h) Neuromuscular blocking agents can conceal inadequate anesthesia and therefore require special justification. If you are using a neuromuscular blocking agent, please complete the following:

- **Why do you need to use a neuromuscular blocking agent?**

- **What physiologic parameters are monitored during the procedure to assess adequacy of anesthesia?**

- **Under what circumstances will incremental doses of anesthetics-analgesics be administered?**

i) Adverse effects:

Describe any potential adverse effects of the experiment on the animals (such as pain, discomfort; reduced growth, fever, anemia, neurological deficits; behavioral abnormalities or other clinical symptoms of acute or chronic distress or nutritional deficiency).

Blood collection may be associated with minimal discomfort.

Treatment with prednisolone or anti-TNF-a is administered at doses known not to cause any serious side effects in humans. Side effects may include redness, swelling at the injection site and headaches.

Animals will be euthanized according to CRPRC criteria for euthanasia of SIV infected macaques. This would include weight loss of >15% in 2 weeks, persistent leukopenia, total WBC<3,000, opportunistic infections that do not respond to therapy, dehydration >7% and not responsive to oral hydration therapy for 3 days, lymphopenia, abdominal lesions and severe depression (obtusion).

How will the signs listed above be ameliorated or alleviated? If signs are not to be alleviated or ameliorated by means of post-operative analgesics or other means, explain why this is necessary.

- Analgesics or any post-operative procedures may be utilized as deemed necessary by the attending veterinarian.

- Efforts will be made to minimize any discomfort and pain.

Note: If any unanticipated adverse effects not described above do occur during the course of the study, a complete description of those effects and the steps taken to mitigate them must be submitted to the committee as an amendment to this protocol.

Is death an endpoint in your experimental procedure? [] Yes [x] No

(Note: “Death as an endpoint” refers to acute toxicity testing, assessment of virulence of pathogens, neutralization tests for toxins, and other studies in which animals are not euthanized, but die as a direct result of the experimental manipulation). If death is an endpoint, explain why it is not possible to euthanize the animals at an earlier point in the study. If you can euthanize the animals at an earlier point, describe the clinical signs which will dictate that an animal will be euthanized.

j) Literature search for alternatives and unnecessary duplication:

Federal law specifically requires this section. You are required to conduct a literature search to determine that either 1) there are no alternative methodologies by which to conduct this class/lab, or 2) there are alternative methodologies, but these are not appropriate for your particular class/lab. “Alternative methodologies” refers to reduction, replacement, and refinement (the three R’s) of animal use, not just animal replacement. You must also show that this use of animals is not unnecessarily duplicative of other studies.

UC Davis provides on-line access to a number of databases that can be used to search for alternatives. Visit

http://trc.ucdavis.edu/jawelsh/Databases_Med_Vet_Researchers.htm (email: jawelsh@ucdavis.edu)

or http://www.vetmed.ucdavis.edu/Animal_Alternatives/main.htm (email: mwwood@ucdavis.edu)

What was the date on which you conducted this search? **July 2003**

List the databases searched or other sources consulted (there should be more than one). Include the years covered by the search.
<table>
<thead>
<tr>
<th>Database Name</th>
<th>Years Covered</th>
<th>Keywords / Search Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pub Med</td>
<td>1993-2003</td>
<td>SIV, prednisolone, anti-TNF alpha, inflammation, IFN gamma, non-human primates</td>
</tr>
<tr>
<td>Current Contents</td>
<td>1993-2003</td>
<td>SIV, prednisolone, anti-TNF alpha, inflammation, IFN gamma, non-human primates</td>
</tr>
</tbody>
</table>

What were your findings with respect to alternative methodologies?

We didn’t find any better methodologies to address the questions asked in this study.

Has this study been previously conducted? [] Yes [x] No

If the study has been conducted previously, explain why it is scientifically necessary to replicate the experiment.

k) Disposition of animals: At what point in the study, if any, will the animals be euthanized?

At the end of the treatment period and/or animals with SAIDS will be euthanized.

l) Methods of euthanasia: Even if your study does not involve killing the animals, you should show a method that you would use in the event of unanticipated injury or illness. If anesthetic overdose is the method, show the agent, dose, and route.

<table>
<thead>
<tr>
<th>Species</th>
<th>Method</th>
<th>Drug</th>
<th>Dose (mg/kg)</th>
<th>route</th>
</tr>
</thead>
<tbody>
<tr>
<td>rhesus macacques</td>
<td>deep ketamine anesthesia followed by barbiturate overdose</td>
<td>Sodium pentobarbital</td>
<td>60 mg/kg</td>
<td>I.V.</td>
</tr>
</tbody>
</table>

m) Surplus animals: What will you do with any animals not euthanized at the conclusion of the project?

N/A
n) Project Roster: Please provide the names of all the individuals who will work with animals on this project. This page will not be made available to the public. Give either the University Employee ID # or a valid UC Davis email address so that we can document training and occupational health compliance for regulatory agencies. Include all investigators, student employees, post-doctoral researchers, staff research associates, post-graduate researchers and laboratory assistants who will actually work with the animals. You don't need to include the staff of the vivarium in which your animals will be housed.

The principal investigator is responsible for keeping this roster current. If any staff is added or subtracted from this project, you must amend the protocol by sending the campus veterinarian a memo describing any changes.

<table>
<thead>
<tr>
<th>Last Name</th>
<th>First Name</th>
<th>Middle Name</th>
<th>UC ID Number or SSN</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Occupational Health Program:

Supervisors must enroll their employees in the campus Occupational Health Program if the workers are at increased risk of illness or injury (such as allergy, physical injury, or infectious disease) because of their work. Enroll workers by having them complete an "Animal Contact History Form", available from Employee Health Services (phone 752-2330). For further information, visit our web site at http://ehs.ucdavis.edu/animal/health/ or read the UC Davis Policy & Procedure Manual 290-25.

Training:

Supervisors are responsible for insuring that their employees are adequate trained, both in the specifics of their job and in the requirements of the Federal Animal Welfare Act. EH&S offers free, basic wet labs in laboratory animal handling and techniques, and lecture format classes in the requirements of the Animal Welfare Act. To schedule a class for your unit, contact EH&S at 2-2364. Information is available on the world wide web at http://ehs.ucdavis.edu/.
Assurances for the Humane Care and Use of Vertebrate Animals:

Principal Investigator's Statement:

I have read and agree to abide by the UC Davis Policy and Procedure Manual section 290-30 (Animal Use and Care). This project will be conducted in accordance with the ILAR Guide for the Care and Use of Laboratory Animals, and the UC Davis Animal Welfare Assurance on file with the US Public Health Service. (These documents are available from the Campus Veterinarian and at http://ehs.ucdavis.edu/). I will abide by all Federal, state and local laws and regulations dealing with the use of animals in research.

I will advise the Animal Use and Care Administrative Advisory Committee in writing of any significant changes in the procedures or personnel involved in this project.

Principal Investigator | Rank / Title | Date

Committee Use Only Below

** Conditions necessary for Committee Approval:

Final Disposition of this protocol:

- [] Approved
- [] Not Approved
- [] Withdrawn by Investigator

Date of Action: _____/_____/

I verify that the Institutional Animal Care and Use Committee of the University of California, Davis, acted on this protocol as shown above.

Campus Veterinarian | Date
ANIMAL ROOM SAFETY INFORMATION

Complete this form if you will be using biohazards, radioisotopes, carcinogens, or toxic chemicals in the animal room.

Identity of Hazard:

Investigator Last Name:
First Name:
Department:
Phone:
Email:
Fax:

Provide a short description of the agent:

SIV is a lentivirus that causes fatal immunodeficiency (AIDS) in rhesus macaques. It is genetically similar to HIV. SIV can infect humans, but it is unknown whether it can cause disease.

This agent / material is hazardous for: [] Humans only [] Animals only [x] Humans and Animals

For which Animal Species?

The agent can be spread by: [x] Blood [] Feces/urine [] Saliva/nasal droplets [] Does not leave animal [x] Other: Genital/eye/mouth/nose

Describe any human health risk associated with this agent:

SIV can infect humans, and thus, there is the potential it may cause fatal immunodeficiency syndrome. SIV-infected humans develop anti-SIV antibodies. So far, there have been no reports of AIDS-like illnesses caused by SIV infection in humans.

The precautions checked below apply to this experiment:

[] The researcher or his/her technicians are responsible for the feeding and care of these animals.
[] The following items must be assumed to be contaminated with hazardous material and must be handled only by the researcher or his/her technicians.

- [] Cage
- [] Stall
- [] Water Bottle
- [x] Animal Carcasses
- [] Bedding
- [] Other:

[x] Cages must be autoclaved before cleaning.
[] Label cages and remove label after decontamination.
[] Animal carcasses must be labeled and disposed of as follows:

- [] Incineration
- [] Bag and Autoclave
- [x] Biohazardous Waste Container

[x] All contaminated waste (soiled bedding or other animal waste) must be properly labeled and disposed of as follows:

- [] Incineration
- [] Bag and Autoclave
- [x] Biohazardous Waste Container
- [] EH&S will pick-up (2-1493).

Personal Protective Equipment Required:

[x] The following personal protective equipment must be worn/used in the room:

- [] Lab Coat/Coveralls
- [x] Disposable Gloves
- [] NIOSH Certified Dust Mask
- [] Eye Protection/Face Shield
- [] Fitted Respirator

[] Other: Describe: Disposable gown/overall

[x] Personal protective equipment must be removed before leaving the room.
[] Personal protective equipment must be discarded or decontaminated at the end of the project.
[x] Hands, arms, and face must be thoroughly washed upon leaving the room.
[] Full shower, including washing of hair, must be taken upon leaving the room.
[] Decontaminate Room (Inform ARS area supervisor when cage and/or room can be returned to general use).

Provide any other information needed to safely work in this room:

Biosafety level 2+ precautions must be followed at all times.
enclosed is the revised protocol AUC 10815. The following revisions have been made:

1) In section 2c the following additions have been made:
 - blood volumes are included
 - the lymph node biopsy procedure is described
 - requirements for fasting and anaesthesia prior to procedures have been added
 - the volume of saline administered to the placebo group has been added

2) Ketamine listed in section 2 l is now also listed in section 2g.
Hello,

The treatments proposed in the AUC's 10815/16/17 will result in viral load changes in the SIVmac infected monkeys. It has been shown previously that to detect a difference in plasma viral load of at least 0.5-1 log10 at the peak of vireamia and at viral setpoint of SIV Infection, 6-8 monkeys are needed.

Please let me know if this answer is acceptable for you.

Thanks.-

, you can answer these via e-mail. No need to revise the protocol again.

Hi ,

I have received the following additional comment regarding protocols 10815, 10816 and 10817. Please send the response to: campusvet@ucdavis.edu.

Thanks in advance,

#10815,16,17():
1. Section E (numbers justification) includes a reference as justification for the numbers, but otherwise fails to adequately justify the number of animals. Since we are now asking PIs to remove all reference to other names, I will remove the references and ask that Dr. group provide the statistical justification.