PROTOCOL FOR ANIMAL USE AND CARE
Handwritten forms are not accepted

CNPRC

PROTOCOL #_10635_
EXPIRES: 06/18/04_

Investigator
Last Name: ____________________________ Last Name: ____________________________
First: ____________________________ First: ____________________________
Middle: ____________________________ Middle: ____________________________
email: ____________________________ email: ____________________________
Department: ____________________________ Department: ____________________________
Phones: work / home ____________________________ work / home ____________________________

Species (common names): rhesus monkeys Number: approx 600/yr Source: CNPRC

Project Title
Biobehavioral characterization for management and research purposes

Overnight housing location: AW6210 Day use: AW6109

Animals will be maintained by: [x] Vivarium [] Investigator

Procedures: Provide a one or two sentence layman’s description of the procedures employed on the animals in this project. This information will help the animal care staff understand any conditions they may encounter while caring for your animals:

3-4 month-old rhesus monkey infants and their mothers will be relocated from their living cages for a 24-hr period. Infants will be assessed for individual differences in behavioral and physiological reactivity, personality, and temperament, and mothers’ temperament will be assessed in their temporary holding cages.

Special Husbandry Requirements: Describe any special requirements your animals have with respect to food, water, temperature, humidity, light cycles, caging type, bedding, or any other conditions of husbandry.

[] Sick Animals [] Dead Animals [] Pest Control

[x] Call Investigator [x] Call Investigator [x] Call Investigator
[x] Save for Investigator [x] OK to use pesticides
[x] Bag for disposal [x] No Pesticides in animal area
[x] Necropsy [x] Necropsy

Hazardous Materials (only if in the animal room):

Infectious Agents? [] Yes [x] No Agent(s): ____________________________
Radioisotopes? [] Yes [x] No Agent(s): ____________________________
Chemical Carcinogens? [] Yes [x] No Agent(s): ____________________________
Toxic Chemicals? [] Yes [x] No Agent(s): ____________________________

Funding source: NCRR, NIH Previously approved? [x] Yes [] No
Is the project already funded? [x] Yes [] No Previous protocol number (if any): 04122

What Veterinarian or veterinary clinic will provide care for your animals? (check one)

University of California, Davis
Printed 11/19/03 10:41 AM Page 1
The decade of psychobiological research with rhesus macaques has documented the existence of stable individual differences in the organization of behavior and physiology. These differences in biobehavioral organization arise from a number of sources, are detectable at an early age, and can persist throughout life. The goal of this project is to implement an assessment program based upon this body of research that will identify differences in biobehavioral organization, and to provide this information to colony managers to aid in decision-making in the areas of health, reproduction, and enrichment. This information will also be made available to investigators who may wish to select animals with specific, defined characteristics, or who simply wish to select a more homogeneous sample for their research projects. Our plan is to characterize all available 3-4 month-old animals born into the CRPRC colony (approximately 300 per year). Because animals born into the Center’s half-acre corrals have the most naturalistic rearing experience, data from these animals will provide the norms for the measures we are proposing. Finally, we will follow the animals enrolled in our assessment program as they proceed through relocations, group formations, assignment to projects, and breeding, in order to validate our measures. This assessment program is unique in the National Primate Research Center system, and will provide quantitative information to colony managers and investigators about psychological and physiological processes that are likely to influence morbidity, mortality, and research data.

b) Procedures employed in this project:

Please check the appropriate boxes if any of these procedures will be employed in your project:

- Monoclonal Antibody Production
- Polyclonal Antibody Production
- LD 50 or ID50 studies.
- Catheters, blood collection, intubation
- Prolonged restraint, (5 hrs+)
- Fasting prior to a procedure.
- Induced illness, intoxication, or disease
- Survival surgical procedures
- Multiple survival surgery
- Behavioral modification.
- Aversive conditioning.
- Special diets; food or water treatment.
- Non-recovery surgical procedures
- Death as an endpoint (see i below)
- Trapping, banding or marking wild animals
- Fasting prior to a procedure.

** If this protocol only describes antibody production, you may use the attached antibody production page in lieu of completing section c below.

c) Describe the use of animals in your project in detail, with special reference to any of procedures checked above.

Include any physical, chemical or biological agents that may be administered. List each study group, and describe all the specific procedures that will be performed on each animal in each study group. Use terminology that will be understood by individuals outside your field of expertise. (Note: This cell will expand to whatever length you require. You may make this section as long as you wish, but try to be concise. Some projects may require one or two pages.)

Approximately 300 monkeys (3-4 months of age) per year will be tested, reflecting as many of the monkeys born into the CRPRC colony as are available to us. Monkeys will be tested in cohorts of 5-8 animals as they reach 3 months of age. Each cohort will be tested for a 24-hr period, and all testing will take place during May through October.

Three-to-four-month-old rhesus monkeys and their mothers will be relocated from their living cages (eg, half-acre corrals, corncribs, indoor housing cages, nursery) to individual holding cages indoors. Mothers will be immobilized with ketamine (10mg/kg), and infants will be removed and taken to a testing/housing area. Mothers will remain in the holding cages. Infants will be housed individually with ad lib access to food, and
a variety of novel objects and towels in their cages. During the 24-hr period, animals will be assessed behaviorally and physiologically in a number of standardized situations to identify individual differences in biobehavioral organization:

1. Focal observations (DAY 1). Each animal will be observed unobtrusively for 5 min. in its housing cage. Principal measures will be activity, vocalization, and contact with objects, and the goal is to determine individual differences in response to the initial separation from mother and relocation to a novel setting.

2. Blood sampling (DAY 1). Animals will be physically restrained briefly and a 1-ml sample of blood will be drawn via femoral venipuncture. Blood will be assayed for numbers of CD4+ and CD8+ T-cells (the ratio of which has been shown to be trait-like and under genetic control) and cortisol, a stress-related hormone. Cortisol responses to separation and relocation have also been shown to be trait-like.

3. Responsiveness to human threat (DAY 1). Using a procedure used in our other studies (and those conducted in other laboratories), animals’ responses to a human displaying a profile or full frontal face will be recorded. Responses of interest include positional, activity, and emotional behaviors. Responses to this test have been shown to be stable over time (ie, reflect stable, individual differences), and are related to frontal EEG activity, and certain personality variables.

4. Social responsiveness (DAY 1). Using a videotape playback paradigm, animals will be exposed individually to a 10-min videotape of an unfamiliar animal displaying aggressive behavior. Responses of interest include positional and social behavior, and have been related to the major personality dimensions Sociability and Confidence.

5. Recognition memory (DAY 1). Each monkey will be tested using a paired comparison task. Each animal receive 10 trials. On each trial the animal will be shown two identical stimuli (objects or pictures), followed by a brief interval, after which the familiar and a novel object is displayed. The principal measure of interest is duration of looking at the novel object. This test reflects visual recognition memory, and performance has been related to later cognitive impairment, and developmental problems.

6. Pituitary-adrenal regulation (DAY 1-2). Animals will be physically restrained briefly and a 0.5-ml sample of blood will be drawn for assay of cortisol. Each animal will then be injected with 500ug/kg of dexamethasone i.m. Dex is a synthetic glucocorticoid that can suppress endogenous cortisol output. The next morning, a 0.5-ml blood sample will be taken to determine the efficacy of Dex in suppressing cortisol. Failure to suppress cortisol in humans is associated with negative affective personality characteristics (esp. depression). Finally, each animal will be injected with 2.5 IU ACTH in order to stimulate cortisol output. Thirty minutes later, a final 0.5-ml blood sample will be drawn for assay of cortisol. All blood samples will be drawn via femoral venipuncture. The dex and ACTH stimulation tests are clinical tests used routinely to determine the integrity of the hypothalamic-pituitary-adrenal system. We have data suggesting that the response of the HPA system is traitlike — individual differences in cortisol concentrations (including responses to dex suppression) are maintained over time. Because of the interrelations of the HPA and immune system, understanding of the regulation of the HPA system may provide information on which animals are at greater risk for poor health outcomes in the colony.

7. Focal observations (DAY 2). Each animal will be observed unobtrusively for 5 min. in its housing cage. Principal measures will be activity, vocalization, and contact with objects. Comparison of the Day 2 with Day 1 focal observations will provide information on individual differences in adaptability to separation and relocation, which may be important for colony management decisions.

At approximately 10 AM, infants will be reunited with their mothers in the mothers’
holding cages. Prior to the reunion, mothers’ temperament will be assessed by having a trained technician hand-present three preferred food items, and record the mothers’ behavioral responses. Following the reunion, mothers and infants will be observed for approximately 1 hr. to insure that the mothers will accept the infants, and to allow an opportunity for the infants to suckle. Mother-infant pairs will then be returned to their original living cages. Observations will continue to insure that the reintroductions to the cages occur safely.

d) Study Groups and Numbers: Define, in the form of a table, the numbers of animals to be used in each experimental group described above. The table may be presented on a separate page as an attachment to this protocol if you prefer. The Normal format should be three columns: Study Group, Procedure, Number of animals. The number of rows should follow from the number of study groups; you may add as many rows as you require. The chart must fully account for the number of animals you intend to use under this protocol. Assign each group to an invasiveness category according to the chart below.

<table>
<thead>
<tr>
<th>Group</th>
<th>Procedures / Drugs</th>
<th>Number of Animals</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>separation from mother, blood sampling, dexamethasone injection, ACTH injection, behavioral tests.</td>
<td>approx. 300 infants/year</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>Ketamine injection, relocation to indoor housing, brief behavioral assessment prior to reunion with infant</td>
<td>approx. 300 mothers/year</td>
<td>3</td>
</tr>
</tbody>
</table>
Categories of invasiveness

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Little or no discomfort or stress
Examples: domestic flocks or herds being maintained in simulated or actual commercial production management systems; the short-term and skillful restraint of animals for purposes of observation or physical examination; blood sampling; injection of material in amounts that will not cause adverse reactions by the following routes: intravenous, subcutaneous, intramuscular, intraperitoneal, or oral. |
| 2 | Minor stress or pain of short duration
Examples: cannulation or catheterization of blood vessels or body cavities under anesthesia; minor surgical procedures under anesthesia, such as biopsies or laparoscopy; short periods of restraint beyond that required for simple observation or examination, but consistent with minimal distress |
| 3 | Moderate to severe distress
Examples: major surgical procedures conducted under general anesthesia, with subsequent recovery; prolonged (several hours or more) periods of physical restraint; induction of behavioral stresses such as maternal deprivation |
| 4 | Severe pain near, at or above the pain tolerance threshold
Examples: exposure to noxious stimuli or agents whose effects are unknown; exposure to drugs, chemicals, or infectious agents at levels that markedly impair physiological systems and which cause death, severe pain, or extreme distress: Surgical experiments which have a high degree of invasiveness. |

Further descriptions of these categories are included in the instructions following this document.

e) Rationale for species and numbers: How did you determine that 1) the species choice was appropriate and 2) the number of animals in each study groups was the minimum number necessary to achieve sound scientific results?

There are no specific hypotheses tested in this study, rather we are proposing a decision making about the animals in the colony. This information will be useful to identify animals at risk for poor health (both physical and psychological) outcomes. In this sense, the proposed project is similar to other assessments conducted routinely on all animals in the colony that involve immobilization and tissue collection. Rhesus macaques were selected because this is the principal species at this Primate Center. Because we will assess virtually every animal born into the colony, we are assured of having a sufficient sample size to document the full range of variation in our measures.

f) Surgery: If the project involves survival surgery, where will the surgery be conducted?

Building:
Room:
Who will be the surgeon?

g) Anesthetics, Analgesics, Tranquilizers, Neuromuscular blocking agents:

Provide the following information about any of these drugs that you intend to use in this project.

<table>
<thead>
<tr>
<th>Species</th>
<th>Drug</th>
<th>Dose (mg/kg)</th>
<th>Route</th>
<th>When and how often will it be given?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhesus</td>
<td>ketamine</td>
<td>10 mg/kg</td>
<td>i.m.</td>
<td>Once on mother for removal of infant</td>
</tr>
</tbody>
</table>

b) Neuromuscular blocking agents can conceal inadequate anesthesia and therefore require special justification. If you are using a neuromuscular blocking agent, please complete the following:

Why do you need to use a neuromuscular blocking agent?

What physiologic parameters are monitored during the procedure to assess adequacy of anesthesia?

Under what circumstances will incremental doses of anesthetics-analogesics be administered?
i) Adverse effects:
Describe any potential adverse effects of the experiment on the animals (such as pain, discomfort; reduced growth, fever, anemia, neurological deficits, behavioral abnormalities or other clinical symptoms of acute or chronic distress or nutritional deficiency)

1. Animals will show distress upon separation from mother. 2. Animals may have difficulty adjusting to solid food.

How will the signs listed above be ameliorated or alleviated? If signs are not to be alleviated or ameliorated by means of post-operative analgesics or other means, explain why this is necessary.

1. The separation period will last only for 24 hrs. In addition, a towel will be placed in the animals' housing cage to provide contact comfort for the infants. The towel will be available as soon as they are placed in the cage, which will be only a few minutes after separation. 2. Continuously available highly-palatable food will be provided. Should an animal refuse to eat, it will receive subcutaneous fluids at the end of Day 1, when it receives the dexamethasone injection. Finally, we will provide a 1-hr period during reunion with mother for the infant to suckle, prior to the mother and infant being returned to their group.

Note: if any unanticipated adverse effects not described above do occur during the course of the study, a complete description of those effects and the steps taken to mitigate them must be submitted to the committee as an amendment to this protocol.

Is death an endpoint in your experimental procedure? [] Yes [x] No
(Note: "Death as an endpoint" refers to acute toxicity testing, assessment of virulence of pathogens, neutralization tests for toxins, and other studies in which animals are not euthanized, but die as a direct result of the experimental manipulation. If death is an endpoint, explain why it is not possible to euthanize the animals at an earlier point in the study. If you can euthanize the animals at an earlier point, describe the clinical signs which will dictate that an animal will be euthanized.

j) Literature search for alternatives and unnecessary duplication:
Federal law specifically requires this section. You are required to conduct a literature search to determine that either 1) there are alternative methodologies by which to conduct this class/lab, or 2) there are alternative methodologies, but they are not appropriate for your particular class/lab. "Alternative methodologies" refers to reduction, replacement, and refinement (the three R's) of animal use, not just animal replacement. You must also show that this use of animals is not unnecessarily duplicative of other studies.

UC Davis provides on-line access to a number of databases that can be used to search for alternatives. Visit http://trc.ucdavis.edu/jawelsh/Databases_Med_Vet_Researchers.htm (email: jawelsh@ucdavis.edu) or http://www.vetmed.ucdavis.edu/Animal_Alternatives/main.htm (email: mwwood@ucdavis.edu)

What was the date on which you conducted this search? 5/21/03

List the databases searched or other sources consulted (there should be more than one). Include the years covered by the search:

<table>
<thead>
<tr>
<th>Database Name</th>
<th>Years Covered</th>
<th>Keywords / Search Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PubMed</td>
<td>mid 1960s - 2003</td>
<td>biobehavioral organization + monkeys; biobehavioral assessment + monkeys</td>
</tr>
<tr>
<td>PsycInfo</td>
<td>1872-2003</td>
<td>Same</td>
</tr>
</tbody>
</table>

What were your findings with respect to alternative methodologies?
There are no alternative methodologies to studying whole animals for identifying individual differences in biobehavioral organization. No alternative assessment instrument has been published in the literature.
Has this study been previously conducted? [] Yes [x] No

If the study has been conducted previously, explain why it is scientifically necessary to replicate the experiment.

k) Disposition of animals: At what point in the study, if any, will the animals be euthanized?

Animals will not be euthanized.

l) Methods of euthanasia: Even if your study does not involve killing the animals, you should show a method that you would use in the event of unanticipated injury or illness. If anesthetic overdose is the method, show the agent, dose, and route.

<table>
<thead>
<tr>
<th>Species</th>
<th>Method</th>
<th>Drug</th>
<th>Dose (mg/kg)</th>
<th>route</th>
</tr>
</thead>
<tbody>
<tr>
<td>rhesus</td>
<td>overdose</td>
<td>pentobarbital</td>
<td>60 mg/kg</td>
<td>i.v.</td>
</tr>
</tbody>
</table>

m) Surplus animals: What will you do with any animals not euthanized at the conclusion of the project?

All animals will be returned to the colony.
Project Roster: Please provide the names of all the individuals who will work with animals on this project. This page will not be made available to the public. Give either the University Employee ID # or a valid UC Davis email address so that we can document training and occupational health compliance for regulatory agencies. Include all investigators, student employees, post-doctoral researchers, staff research associates, post-graduate researchers and laboratory assistants who will actually work with the animals. You don’t need to include the staff of the vivarium in which your animals will be housed.

The principal investigator is responsible for keeping this roster current. If any staff is added or subtracted from this project, you must amend the protocol by sending the campus veterinarian a memo describing any changes.

<table>
<thead>
<tr>
<th>Last Name</th>
<th>First Name</th>
<th>Middle Name</th>
<th>UC ID Number or SSN</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Occupational Health Program:

Supervisors must enroll their employees in the campus Occupational Health Program if the workers are at increased risk of illness or injury (such as allergy, physical injury, or infectious disease) because of their work. Enroll workers by having them complete an "Animal Contact History Form", available from Employee Health Services (phone 752-2330). For further information, visit our web site at http://ehs.ucdavis.edu/animal/health/ or read the UC Davis Policy & Procedure Manual 290-25.

Training:

Supervisors are responsible for insuring that their employees are adequate trained, both in the specifics of their job and in the requirements of the Federal Animal Welfare Act. EH&S offers free, basic wet labs in laboratory animal handling and techniques, and lecture format classes in the requirements of the Animal Welfare Act. To schedule a class for your unit, contact EH&S at 2-2364. Information is available on the world wide web at http://ehs.ucdavis.edu/.
Assurances for the Humane Care and Use of Vertebrate Animals:
Principal Investigator's Statement:

I have read and agree to abide by the UC Davis Policy and Procedure Manual section 290-30 (Animal Use and Care). This project will be conducted in accordance with the ILAR Guide for the Care and Use of Laboratory Animals, and the UC Davis Animal Welfare Assurance on file with the US Public Health Service. (These documents are available from the Campus Veterinarian and at http://ehs.ucdavis.edu/). I will abide by all Federal, state and local laws and regulations dealing with the use of animals in research.

I will advise the Animal Use and Care Administrative Advisory Committee in writing of any significant changes in the procedures or personnel involved in this project.

_________________________ __________________________
Principal Investigator Rank / Title Date

Committee Use Only Below

** Conditions necessary for Committee Approval:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Final Disposition of this protocol:

- Approved
- Not Approved
- Withdrawn by Investigator

Date of Action: ______/______/______

I verify that the Institutional Animal Care and Use Committee of the University of California, Davis, acted on this protocol as shown above:

Campus Veterinarian

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>