CNPRC

Investigator

<table>
<thead>
<tr>
<th>Last Name:</th>
<th>First:</th>
<th>Middle:</th>
<th>email:</th>
<th>Department:</th>
<th>Phone / Fax:</th>
<th>After hrs. #:</th>
</tr>
</thead>
</table>

Contact

<table>
<thead>
<tr>
<th>Last Name:</th>
<th>First:</th>
<th>Middle:</th>
<th>email:</th>
<th>Department:</th>
<th>Phone:</th>
<th>After hrs. #:</th>
</tr>
</thead>
</table>

Species (common names): Primate
Number: 14/yr

Source: CRPRC

Project Title: Evaluation of Sperm in Male Macaques

Overnight housing location: CRPRC

Animals will be maintained by:
[x] Vivarium [] Investigator *(If investigator maintained, attach husbandry SOP’s.)*

Procedures: Provide a one or two sentence layman's description of the procedures employed on the animals in this project. This information will help the animal care staff understand any conditions they may encounter while caring for your animals.

Male macaques wear a light-weight metal alloy collar to facilitate moving the monkey to the primate chair restraint. Semen is collected from chair-trained adult male macaques by penile cuff electroejaculation a maximum of 3 times per week. The gelectrode material has eliminated the risk of penile injury and we have had no lesions in the 12 years that this method has been used.

Special Husbandry Requirements: Describe any special requirements your animals have with respect to food, water, temperature, humidity, light cycles, caging type, bedding, or any other conditions of husbandry.

No special husbandry requirements will be required.

Other instructions for animal care staff: (check applicable entries)

<table>
<thead>
<tr>
<th>Sick Animals</th>
<th>Dead Animals</th>
<th>Pest Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>[x] Call Investigator</td>
<td>[x] Call Investigator</td>
<td>[x] Call Investigator</td>
</tr>
<tr>
<td>[x] Clinician to treat</td>
<td>[] Bag for disposal</td>
<td>[x] OK to use pesticides</td>
</tr>
<tr>
<td>[] Terminate</td>
<td>[x] Necropsy</td>
<td>[] No Pesticides in animal area</td>
</tr>
<tr>
<td>[] Necropsy</td>
<td>[] Necropsy</td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Materials (only if in the animal room):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[] Yes</td>
<td>[] Yes</td>
<td>[] Yes</td>
<td>[] Yes</td>
<td></td>
</tr>
<tr>
<td>[x] No</td>
<td>[x] No</td>
<td>[x] No</td>
<td>[x] No</td>
<td></td>
</tr>
</tbody>
</table>

Infectious Agent(s):

Radioisotope(s):

Chemical Carcinogen(s):

Toxic Chemical:*
Funding source: NIH
Previously approved? [] Yes [x] No
Is the project already funded? [x] Yes [] No
Previous protocol number (if any): 9192

What Veterinarian or veterinary clinic will provide care for your animals? (check one)

[] Lab Animal Health Clinic (2-0514)
[] VMTH Large Animal Field Service (2-0292)
[x] California Primate Research Center (2-0447)
[] Another Veterinarian

If you checked “Another Veterinarian”, please provide:

...if your veterinarian is not affiliated with one of the three service units listed above, please contact the campus veterinarian, 2-2357 (email pctillman@ucdavis.edu) for current information about training and record keeping requirements.

Summary of Procedures:

a) Briefly describe the overall intent of the study. Include in your description a statement of your hypothesis, the objectives and significance of the study. Your target audience is a faculty member from a discipline unrelated to yours. Do not use jargon.

Semen collection from macaques is critical for several sperm cell biology studies currently in progress at CHE. We are investigating the interaction between sperm and oocytes in macaques to further understand the mechanisms of fertilization. Sperm are also used for biochemical studies of enzymes and other sperm components involved in fertilization. Sperm are regularly evaluated morphologically by light and electron microscopy and for motility by computer assisted methods. Methods and assays used to evaluate sperm function will be used to assess potential of a number of sperm-targeted contraceptive approaches. Development of contraceptive techniques, including immunization of monkeys with contraceptive vaccines and administration of compounds that affect sperm transport will be covered by different protocols.

b) Procedures employed in this project:

Please check the appropriate boxes if any of these procedures will be employed in your project:

[] Monoclonal Antibody Production **
[] Polyclonal Antibody Production **
[] LD 50 or ID50 studies.
[] catheters, blood collection, intubation
[] Prolonged restraint. (8 hrs+)
[] Fasting prior to a procedure.
[] Food or water restriction
[] Non-recovery surgical procedures
[] Survival surgical procedures
[] Multiple survival surgery
[] Induced illness, intoxication, or disease
[] Death as an endpoint (see i below)
[] Trapping, banding or marking wild animals
[] Special diets; food or water treatment.
[] Behavioral modification.
[] Aversive conditioning.

** If this protocol only describes antibody production, you may use the attached antibody production page in lieu of completing section c below.
c) **Describe the use of animals in your project in detail**, with special reference to any of procedures checked above. Include any physical, chemical or biological agents that may be administered. List each study group, and describe all the specific procedures that will be performed on each animal in each study group. Use terminology that will be understood by individuals outside your field of expertise. *(Note: This cell will expand to whatever length you require. You may make this section as long as you wish, but try to be concise. Some projects may require one or two pages.)*

The adult male cynomolgus and rhesus macaques used for this protocol wear light-weight metal alloy collars which facilitates moving the males to the primate chair restraint for semen collection. The method of restraint has been used routinely at CRPRC for many years with good results. The males are not anesthetized during semen collection, but it has been reported that human volunteers did not find the penile cuff method of ejaculation to be painful. Additionally, after the macaques are trained to the procedure, they appear to look forward to the procedure and cooperate fully during the transfer from cage to chair restraint. Briefly, the male macaque is transferred to the chair restraint, strips of the gel material are wrapped around the penis and attached to the electrode stimulator via alligator strips and lead wires. The male is stimulated with increasing levels of voltage until ejaculation occurs. The semen collected is approximately 0.25 ml from cynos and 0.5 ml from rhesus. The ejaculate typically contains 200-400 million sperm. The number of sperm required varies for any specific experiment and often samples are collected from several males on a given day. Any individual male will only be electroejaculated a maximum of three times per week, typically with a day of rest between each collection. Males utilized for semen collection are not used as breeding males in the colony.

d) **Study Groups and Numbers:** Define, in the form of a table, the numbers of animals to be used in each experimental group described above. The table may be presented on a separate page as an attachment to this protocol if you prefer. The Normal format should be three columns: Study Group, Procedure, Number of animals. The number of rows should follow from the number of study groups; you may add as many rows as you require. The chart must fully account for the number of animals you intend to use under this protocol. Assign each group to an invasiveness category according to the chart below.

<table>
<thead>
<tr>
<th>Group</th>
<th>Procedures / Drugs</th>
<th>Number of Animals</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electroejaculation</td>
<td>cynomolgus</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Electroejaculation</td>
<td>rhesus</td>
<td>4</td>
</tr>
</tbody>
</table>

Categories of invasiveness

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Little or no discomfort or stress
Examples: domestic flocks or herds being maintained in simulated or actual commercial production management systems; the short-term and skillful restraint of animals for purposes of observation or physical examination; blood sampling; injection of material in amounts that will not cause adverse reactions by the following routes: intravenous, subcutaneous, intramuscular, intraperitoneal, or oral. |
| 2 | Minor stress or pain of short duration
Examples: cannulation or catheterization of blood vessels or body cavities under anesthesia; minor surgical procedures under anesthesia, such as biopsies or laparoscopy; short periods of restraint beyond that required for simple observation or examination, but consistent with minimal distress |
| 3 | Moderate to severe distress
Examples: major surgical procedures conducted under general anesthesia, with subsequent recovery; prolonged (several hours or more) periods of physical restraint; induction of behavioral stresses such as maternal deprivation |
| 4 | Severe pain near, at or above the pain tolerance threshold
Examples: exposure to noxious stimuli or agents whose effects are unknown; exposure to drugs, chemicals, or infectious agents at levels that markedly impair physiological systems and which cause death, severe pain, or extreme distress: Surgical experiments which have a high degree of invasiveness. |

Further descriptions of these categories are included in the instructions following this document.
e) Rationale for species and numbers: How did you determine that 1) the species choice was appropriate and 2) the number of animals in each study groups was the minimum number necessary to achieve sound scientific results?

It is necessary to collect semen from macaques to support our ongoing in vitro studies for the development of the monkey system as a model for human reproduction. Monkeys are most appropriate for contraception studies because they are reproductively similar to humans for which contraceptive methodologies are ultimately being developed.

Using a maximum of 14 animals (10 cynos and 4 rhesus) per year ensures an adequate number of animals so that no single monkey is used more than 3 times per week and that experimental numbers will be sufficient for statistical analysis. The cynomolgus monkeys are used in most experiments and the experimental designs usually require that at least six different males provide semen for at least six different replicate experiments. The rhesus monkeys are used primarily for comparative studies of biochemical parameters to verify that the sperm of these closely related macaque species have the same biological characteristics.

f) Surgery: If the project involves survival surgery, where will the surgery be conducted?

Building:
Room:

Who will be the surgeon?

g) Anesthetics, Analgesics, Tranquilizers, Neuromuscular blocking agents:

Post procedural analgesics should be given whenever there is possibility of pain or discomfort that is more than slight or momentary. If postoperative analgesics are not to be given, justify the practice under part (i) below.

Provide the following information about any of these drugs that you intend to use in this project.

<table>
<thead>
<tr>
<th>Species</th>
<th>Drug</th>
<th>Dose (mg/kg)</th>
<th>Route</th>
<th>When and how often will it be given?</th>
</tr>
</thead>
</table>

Neuromuscular blocking agents can conceal inadequate anesthesia and therefore require special justification. If you are using a neuromuscular blocking agent, please complete the following:

Why do you need to use a neuromuscular blocking agent?

What physiologic parameters are monitored during the procedure to assess adequacy of anesthesia?

Under what circumstances will incremental doses of anesthetics-analgesics be administered?

i) Adverse effects:

Describe any potential adverse effects of the experiment on the animals (such as pain, discomfort; reduced growth, fever, anemia, neurological deficits; behavioral abnormalities or other clinical symptoms of acute or chronic distress or nutritional deficiency)

This procedure has been used for the past 12 years without adverse effects and we do not anticipate any adverse effects in the future. However, it is possible that minor penile lesions could develop.

How will the signs listed above be ameliorated or alleviated? If signs are not to be alleviated or ameliorated by means of postoperative analgesics or other means, explain why this is necessary.

Although we don’t anticipate adverse effects, analgesics (oxymorphone 0.15mg/kg 1xIM) would be administered to alleviate pain and discomfort.

Note: if any unanticipated adverse effects not described above do occur during the course of the study, a complete description of those effects and the steps taken to mitigate them must be submitted to the committee as an amendment to this protocol.
Is death an endpoint in your experimental procedure? [] Yes [x] No

(Note: “Death as an endpoint” refers to acute toxicity testing, assessment of virulence of pathogens, neutralization tests for toxins, and other studies in which animals are not euthanized, but die as a direct result of the experimental manipulation). If death is an endpoint, explain why it is not possible to euthanize the animals at an earlier point in the study. If you can euthanize the animals at an earlier point, describe the clinical signs which will dictate that an animal will be euthanized.

Death is not an endpoint in this study. Euthanasia by clinician’s advice.

j) Literature search for alternatives and unnecessary duplication:

Federal law specifically requires this section. You are required to conduct a literature search to determine that either 1) there are no alternative methodologies by which to conduct this class/lab, or 2) there are alternative methodologies, but these are not appropriate for your particular class/lab. “Alternative methodologies” refers to reduction, replacement, and refinement (the three R’s) of animal use, not just animal replacement. You must also show that this use of animals is not unnecessarily duplicative of other studies.

UC Davis provides on-line access to a number of databases that can be used to search for alternatives. Visit http://trc.ucdavis.edu/jawelsh/Databases_Med_Vet_Researchers.htm (email: jawelsh@ucdavis.edu) or http://www.vetmed.ucdavis.edu/Animal_Alternatives/main.htm (email: mwwood@ucdavis.edu)

What was the date on which you conducted this search? 6/15/03

List the databases searched or other sources consulted (there should be more than one). Include the years covered by the search.

<table>
<thead>
<tr>
<th>Database Name</th>
<th>Years Covered</th>
<th>Keywords / Search Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Contents</td>
<td>1990-2003</td>
<td>monkey, semen, collection</td>
</tr>
<tr>
<td>PubMed</td>
<td>1990-2003</td>
<td>primate, semen, collection</td>
</tr>
</tbody>
</table>

What were your findings with respect to alternative methodologies?

The methods described in this protocol are alternative, less invasive methods for semen collection than is currently used in some other primate studies. Other methods, such as rectal probe electroejaculation or penile cuff stimulation with metal electrodes can result in injury to the animal.

Has this study been previously conducted? [] Yes [x] No

If the study has been conducted previously, explain why it is scientifically necessary to replicate the experiment.

This protocol does not duplicate other experiments because semen is used for other projects of original design.

k) Disposition of animals: At what point in the study, if any, will the animals be euthanized?

Such circumstances are not expected during this study. In the unlikely event that complications arise, euthanasia would be performed on clinician’s advice.

l) Methods of euthanasia: Even if your study does not involve killing the animals, you should show a method that you would use in the event of unanticipated injury or illness. If anesthetic overdose is the method, show the agent, dose, and route.

<table>
<thead>
<tr>
<th>Species</th>
<th>Method</th>
<th>Drug</th>
<th>Dose (mg/kg)</th>
<th>route</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cynomolgus</td>
<td>As per CRPRC guidelines</td>
<td>Pentobarbitol</td>
<td>60 mg/kg</td>
<td>IV</td>
</tr>
</tbody>
</table>

m) Surplus animals: What will you do with any animals not euthanized at the conclusion of the project?

Animals will be returned to colony.
n) Project Roster: Please provide the names of all the individuals who will work with animals on this project. This page will not be made available to the public. Give either the University Employee ID # or a valid UC Davis email address so that we can document training and occupational health compliance for regulatory agencies. Include all investigators, student employees, post-doctoral researchers, staff research associates, post-graduate researchers and laboratory assistants who will actually work with the animals. You don’t need to include the staff of the vivarium in which your animals will be housed.

The principal investigator is responsible for keeping this roster current. If any staff is added or subtracted from this project, you must amend the protocol by sending the campus veterinarian a memo describing any changes.

<table>
<thead>
<tr>
<th>Last Name</th>
<th>First Name</th>
<th>Middle Name</th>
<th>UC ID Number or SSN</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Occupational Health Program:

Supervisors must enroll their employees in the campus Occupational Health Program if the workers are at increased risk of illness or injury (such as allergy, physical injury, or infectious disease) because of their work. Enroll workers by having them complete an "Animal Contact History Form", available from Employee Health Services (phone 752-2330). For further information, visit our web site at http://ehs.ucdavis.edu/animal/health/ or read the UC Davis Policy & Procedure Manual 290-25.

Training:

Supervisors are responsible for insuring that their employees are adequate trained, both in the specifics of their job and in the requirements of the Federal Animal Welfare Act. EH&S offers free, basic wet labs in laboratory animal handling and techniques, and lecture format classes in the requirements of the Animal Welfare Act. To schedule a class for your unit, contact EH&S at 2-2364. Information is available on the world wide web at http://ehs.ucdavis.edu/.
Assurances for the Humane Care and Use of Vertebrate Animals:

Principal Investigator's Statement:

I have read and agree to abide by the UC Davis Policy and Procedure Manual section 290-30 (Animal Use and Care). This project will be conducted in accordance with the ILAR Guide for the Care and Use of Laboratory Animals, and the UC Davis Animal Welfare Assurance on file with the US Public Health Service. (These documents are available from the Campus Veterinarian and at http://ehs.ucdavis.edu/). I will abide by all Federal, state and local laws and regulations dealing with the use of animals in research.

I will advise the Animal Use and Care Administrative Advisory Committee in writing of any significant changes in the procedures or personnel involved in this project.

Principal Investigator | Rank / Title | Date

Committee Use Only Below

** Conditions necessary for Committee Approval:

Final Disposition of this protocol:

__________ Approved

__________ Not Approved

__________ Withdrawn by Investigator

Date of Action: _____ / ____ / ____

I verify that the Institutional Animal Care and Use Committee of the University of California, Davis, acted on this protocol as shown above.

Campus Veterinarian | Date