PROTOCOL FOR ANIMAL USE AND CARE

Handwritten forms are not accepted

CRPRC

Investigator

Last Name:_________________________ First:_________________________Middle:_________________________email:_________________________Phone / Fax:_________________________After hrs. #:_________________________

Contact

Last Name:_________________________ First:_________________________Middle:_________________________email:_________________________Phone:_________________________After hrs. #:_________________________

Species (common names): Rhesus macaque Number: 10 Source: CRPRC

Project Title Hierarchical processing in the motion system

Overnight housing location: CFN Annex Day use only: _______________________

Animals will be maintained by: [x] Vivarium [] Investigator (If investigator maintained, attach husbandry SOP's.)

Procedures: Provide a one or two sentence layman's description of the procedures employed on the animals in this project. This information will help the animal care staff understand any conditions they may encounter while caring for your animals.

We record or perturb electrophysiological activity in visual cortex of alert animals performing visual tasks. The animals are surgically implanted with eye coil, head restraint post, and recording cylinder(s). For recording sessions, the animals are trained to sit in a primate chair and perform specific tasks for water or juice reward.

Special Husbandry Requirements: Describe any special requirements your animals have with respect to food, water, temperature, humidity, light cycles, caging type, bedding, or any other conditions of husbandry.

Water access is restricted. In practice, this means that the investigator will provide all the animals' water during the week, and the animal care staff will provide water on weekends and holidays, as per investigator instructions.

Other instructions for animal care staff: (check applicable entries)

Sick Animals

[] Call Investigator [] Call Investigator [] Call Investigator

[] Clinician to treat [] Save for Investigator [x] OK to use pesticides

[] Terminate [] Bag for disposal [] No Pesticides in animal area

[] Necropsy [] Necropsy

Dead Animals

Hazardous Materials (only if in the animal room):

Infectious Agents? [] Yes [x] No Agent(s):_________________________

Radioisotopes? [] Yes [x] No Agent(s):_________________________

Chemical Carcinogens? [] Yes [x] No Agent(s):_________________________

Toxic Chemicals? [] Yes [x] No Agent(s):_________________________
Summary of Procedures:

a) Briefly describe the overall intent of the study. Include in your description a statement of your hypothesis, the objectives and significance of the study. Your target audience is a faculty member from a discipline unrelated to yours. Do not use jargon.

We test hypotheses regarding the perceptual role of visual cortex, using electrophysiological methods in alert monkeys performing visual tasks. We are interested both in the mechanisms by which information is serially processed in multiple cortical areas, and in the significance of these distinct visual areas for visual perception.

b) Procedures employed in this project:

Please check the appropriate boxes if any of these procedures will be employed in your project:

- Monoclonal Antibody Production
- Polyclonal Antibody Production
- LD 50 or ID50 studies.
- catheters, blood collection, intubation
- Prolonged restraint (8 hrs+)
- Fasting prior to a procedure.
- Food or water restriction
- Non-recovery surgical procedures
- Survival surgical procedures
- Multiple survival surgery
- Behavioral modification.
- Aversive conditioning.
- Special diets; food or water treatment.
- Induced illness, intoxication, or disease
- Death as an endpoint (see i below)
- Trapping, banding or marking wild animals

** If this protocol only describes antibody production, you may use the attached antibody production page in lieu of completing section c below.
The overall life history of an animal in the laboratory is controlled by several interacting factors: the condition of the cortex, the scientific necessity of recovering histological verification of recording sites, the continued need for behavioral data from the task for which the animal has been trained, etc. So, it is not practical to define in advance the total number of surgeries that each animal will receive, but it might be as large

c) Describe the use of animals in your project in detail, with special reference to any of procedures checked above. Include any physical, chemical or biological agents that may be administered. List each study group, and describe all the specific procedures that will be performed on each animal in each study group. Use terminology that will be understood by individuals outside your field of expertise. (Note: This cell will expand to whatever length you require. You may make this section as long as you wish, but try to be concise. Some projects may require one or two pages.)

Two different physiological methods are employed in the laboratory (recording and microstimulation), but these involve very similar treatments of the animals, and thus all animals can be considered to be in one study group. These animals are maintained for long periods of time, trained extensively on visual discrimination tasks, and often used in more than one related experiment. The procedures will be broken down into each constituent procedure in the following discussion.

Surgical procedures. All experiments require head restraint and the measurement of eye position, and these are performed according to well-tested methods originally developed by , and now used in a very large number of laboratories. Under full surgical anesthesia (CRPRC surgical suite and support staff), we implant in one eye a 3-turn scleral search coil of fine, multistrand, Teflon-insulated stainless wire (method of Judge, 1980, with minor modifications). The leads for this coil exit the orbit laterally and run subcutaneously up to a dental acrylic head implant, which surrounds the eye coil connector (small plastic electronic plug), the head restraint post, and the recording cylinder. The entire acrylic implant is secured to the skull using a combination of transcranial, slotted orthopedic bolts and self-tapping orthopedic screws. The recording cylinder typically is located over occipital cortex, and covers a 2-cm craniotomy, formed using a hand trephine. Dura is left intact under the craniotomy, protecting the brain between recording sessions. Therefore, these procedures invade no body cavities. Dr. has had extensive experience with all of these procedures, having performed them at least 25 times in his career Most of these have been performed at the CRPRC under the observation of their veterinary staff. He will be present at all surgeries, and will only allow staff to perform these surgeries after extensive training. Training consists of 1) completion of a sterile techniques course, 2) observation of at least 2 surgeries, and 3) performing as sterile assistant in at least one surgery.

Multiple survival surgeries. These are employed for three distinct reasons. First, animals often need extensive behavioral training prior to recording (see below). For these animals, the eye coil and head restraint post are initially implanted (these are necessary for training), and the recording cylinder or cylinders are implanted in a separate surgery after the animal is trained. This reduces any risks associated with the presence of the cylinder and reduces the daily maintenance of the animal during this period. Also, if a recording cylinder is left in place, the bone will typically regrow from the edges of the craniotomy. Thus, if the cylinder were initially implanted, a separate procedure would probably be required in any case, to reopen the craniotomy for recording. For similar reasons, a second cylinder is sometimes implanted in a second surgery, when recording will commence on the second hemisphere of each monkey. For some experiments it is necessary to simultaneously have access to both hemispheres, and for these animals, cylinders will be simultaneously present on both hemispheres. The second reason for a repeat survival surgery is the failure of an eye coil. These are designed to be flexible, and to move with the numerous, high-velocity eye movements that monkeys make. However, the wire of which the coil is made will eventually fatigue and electrical continuity will be lost, causing coil failure. For the continuation of the experiments, it is necessary to replace the coil. In practice, a coil will typically last about a year, but there is considerable variability (range about 6 months to 3 years). When a coil fails, there is usually no discomfort to the animal, so the coil is left in place, and a new one is implanted in the other eye. The last reason for a surgery is mentioned above: removal of bone regrowth from the edges of the craniotomy. Lastly, surgeries are sometimes necessary to either repair a damaged implant or to remove part or all of an implant if chronic infection develops underneath the implant.

The overall life history of an animal in the laboratory is controlled by several interacting factors: the condition of the cortex, the scientific necessity of recovering histological verification of recording sites, the continued need for behavioral data from the task for which the animal has been trained, etc. So, it is not practical to define in advance the total number of surgeries that each animal will receive, but it might be as large
Animal training. Physiological measurements are made under two different behavioral tasks, different in difficulty and attentional demands. For some experiments, the animal need only be trained to maintain his gaze on a visual target presented on the screen immediately in front of the animal ("fixation"). This is natural behavior of a monkey, and is conditioned using standard operant methods and rewards of water or juice. In this process, desired behaviors (such as fixation) are encouraged by being paired with positive reinforcement. For this to work, the behavior being reinforced must occur spontaneously before training, and the reward offered must be desirable to the animal. The other behavioral task involves the animal making a sensory discrimination of stimuli controlled by the experimenter. Typically, these involve a categorical judgment of stimulus type ("up" or "down"? ; "redder" or greener?). In the course of training, each stimulus type is associated with a specific response alternative. In our lab, these responses are always eye movements to visual targets on the screen. Thus, in a typical experiment, the monkey might be presented with a single stimulus, moving up or down, and after the stimulus is presented, two targets appear, one above the stimulus location and one below. The monkey learns to make a rapid eye movement to the correct target to receive reward. Incorrect judgments are followed by a brief time-out period, which approximately doubles the time interval until the next trial. In practice, the stimuli being discriminated are often very similar, to measure a threshold for sensory discrimination, and the animals typically work for approximately 75% correct performance, overall. To be useful for these experiments, the animals’ performance must be crisp and reliable, and the measured thresholds must be repeatable across sessions. This requires extensive training on the specific task, prior to the commencement of physiological recording. A typical training sequence involves first fixation training (about 2-3 weeks), then the start of discrimination training. For most tasks, the animals learn the basics of the task in a few weeks, but getting asymptotically low and stable thresholds, generalized across different specific stimuli, requires several months of training.

Recording procedures. All the experiments involve microelectrode recording from visual cortex, and these procedures employ “industry standard” methods widely used in the field. Specifically, we use the turret-and-grid system (et al, 1988) to secure a removable nylon grid inside the recording cylinder, through which a 23 gauge stainless steel guide tube is inserted through the dura mater. On a daily basis, fine tungsten or platinum-iridium microelectrodes are inserted through the guide tube to record the activity of neurons in the target area. Between recording sessions, the guide tube is either removed or plugged with an antibiotic-coated wire. The guide tubes remain in a single location for up to a week at a time, and when they are moved, the grid and turret are removed for thorough cylinder cleaning. In addition, the cylinder is flushed every day through the holes in the nylon grid, using dilute disinfectant/saline solutions. The veterinary staff of the CRPRC have observed all of these daily recording procedures.

Microstimulation. Electrical microstimulation is used to test whether signals in a particular region actually are used in perception. If they are, then artificially activating a restricted region will measurably affect performance on a perceptual task. This method is always used on conjunction with the recording methods described above, since we need to physiologically identify the region being activated, using known “landmarks”. It also employs the same guide tube and electrodes. Once a suitable stimulation site is identified by physiological criteria, we connect the electrode to a ground-isolated, constant-current source. This generates small pulses under the control of a programmable pulse generator, and we employ fairly standard parameters. Our pulse trains are at a frequency of 200 Hz (they might sometimes be lower, but never higher), which is similar to the firing rate of an active cortical neuron. Each pulse is biphasic, cathodal leading, and the duration of each phase is 200 microseconds, with 100 microseconds intervening between them. The amplitude of each phase is typically 20 microamps, but can range from 0-50 microamps. Similar parameters have been widely used in studies in many different laboratories, and in many different brain structures. Similar methods are widely used in human neurosurgical procedures as well, with no discomfort, even with much higher currents. This is because the brain actually contains no pain receptors. However, patients do report sensations associated with the function of the
place being stimulated, like flashes of light following visual cortex stimulation. These sorts of perceptual phenomena are the goal of the experiment, because they reveal the perceptual role of the structure being stimulated.

Water restriction. The scientific progress on these experiments is usually limited by the monkeys’ work habits, since all data are collected from alert monkeys engaged in either simple (fixation) or complex (discrimination) visual tasks. Therefore, we are highly motivated to keep the animals in a maximally healthy and motivated state. Fluid reward is by far the most effective means of motivating the animals, and when monitored closely, provides no significant health risk to the animals. The exact level of restriction that is optimal is highly variable between animals, and also depends upon the difficulty of the task. Some monkeys will work for thousands of rewards per day with minimal restriction of intake if given desirable fluids; others will not work any better for fruit juice than for water. Therefore, the exact restriction employed for each animal is determined empirically in the first few weeks that an animal is in the lab on a daily basis. Much of that period is spent in adjusting the various parameters (type of reward, amount per reward, intertrial interval, etc.) to jointly maximize the daily water intake and the daily work output from the animal. In general, we find that most animals will work well for water doses around 20-30 cc/kg-day. The animals typically work for 5 days each week, and are given extra water on weekends. To verify the animals’ physiology is normal, we monitor the following indicators of health and physiology, on a daily basis or as often as possible:

1) **Body weight.** The animals are weighed each day they are on study, on an accurate flatbed electronic scale. Modest weight losses (5-15%) are not unexpected; larger weight losses, especially if accompanied by any other signs, cause us to increase water dosage immediately. The baseline from which this weight loss is estimated is taken from the most recent weights shown by the animal when it was under *ad lib* water access.
2) **Urine specific gravity.** Whenever a fresh urine sample is available, we measure urine specific gravity.
3) **Moistness of feces.** This is one of the most useful and sensitive measures of hydration, in our experience, and fresh feces are always inspected.
4) **Skin turgor.** Folds of skin are inspected for resilience.

All water restriction practices will be in accord with the standard operating procedure PP-1, developed jointly with the CRPRC staff and the Campus Veterinarian. (See attached)

Terminal procedures. Animals will be killed at the end of the study, when we need for scientific reasons to verify our recording sites. To verify our recording locations, we make small “marking lesions”. In addition, we will in some cases perform additional anatomical experiments tracing connections in cortex with anatomical tracing compounds. Both of these anatomical procedures require good histology, which in turn requires perfusion of the brain at the time of euthanasia.

Tracer injections: Approximately two weeks before an animal is scheduled to be sacrificed, we will inject retrograde tracers into physiologically identified visual cortical areas. We will use Hamilton microsyringes for the injections (similar in diameter and shape to the guide tubes we already use), and will inject .3-.5 microliters of Dextran-conjugated fluoroemerald and flouroruby solutions (5% concentration in sterile saline). These tracers are picked up by nearby nerve terminals and retrogradely transported back to the cells of origin. We allow two weeks for this retrograde transport.

Electrolytic marking lesions: We will wish to mark the boundaries of the region in which the physiological recordings have been made. For this purpose, we pass 10-20 microamps of DC current through the recording electrode in the region of interest. This causes thermal damage to a very small region of cortex, approximately 100 microns in diameter, allowing us to recover the location of the electrode on histological sections. In each hemisphere from which we record, we will place between 3 and 10 of such marking lesions. These will be done in the last week of recording, after the retrograde labels have been injected and immediately before the animal is sacrificed. I have seen such lesions placed in alert animals in the past, while the animal was engaged in visual discrimination, and there is no sign that the animals noticed the passage of the current - their behavior was uninterrupted.
Perfusion: We will terminate the animals in the necropsy facility at the CRPRC, which is fully staffed and equipped. We will follow standard procedures, with minor exceptions detailed below.

Drugs:
- sodium heparin, 1000 units approx.
- sodium pentobarbital, to effect (deep surgical plane)

Post-mortem application:
- Formalin, 10% solution in saline
- Paraformaldehyde, 4% in saline
- Sucrose, 10% in 4% paraformaldehyde

The animal will be tranquilized with Ketamine, and the heparin will be injected IV into a leg vein. The rest of the procedure will follow the SOPs for perfusions on file at the CRPRC. All procedures will be done in the necropsy facility at the CRPRC by their trained staff.

d) Study Groups and Numbers: Define, in the form of a table, the numbers of animals to be used in each experimental group described above. The table may be presented on a separate page as an attachment to this protocol if you prefer. The Normal format should be three columns: Study Group, Procedure, Number of animals. The number of rows should follow from the number of study groups; you may add as many rows as you require. The chart must fully account for the number of animals you intend to use under this protocol. Assign each group to an invasiveness category according to the chart below.

<table>
<thead>
<tr>
<th>Group</th>
<th>Procedures / Drugs</th>
<th>Number of Animals</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Surgery/training/restraint/water restriction</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>
Categories of invasiveness

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Little or no discomfort or stress
Examples: domestic flocks or herds being maintained in simulated or actual commercial production management systems; the short-term and skillful restraint of animals for purposes of observation or physical examination; blood sampling; injection of material in amounts that will not cause adverse reactions by the following routes: intravenous, subcutaneous, intramuscular, intraperitoneal, or oral. |
| 2 | Minor stress or pain of short duration
Examples: cannulation or catheterization of blood vessels or body cavities under anesthesia; minor surgical procedures under anesthesia, such as biopsies or laparoscopy; short periods of restraint beyond that required for simple observation or examination, but consistent with minimal distress |
| 3 | Moderate to severe distress
Examples: major surgical procedures conducted under general anesthesia, with subsequent recovery; prolonged (several hours or more) periods of physical restraint; induction of behavioral stresses such as maternal deprivation |
| 4 | Severe pain near, at or above the pain tolerance threshold
Examples: exposure to noxious stimuli or agents whose effects are unknown; exposure to drugs, chemicals, or infectious agents at levels that markedly impair physiological systems and which cause death, severe pain, or extreme distress; Surgical experiments which have a high degree of invasiveness. |

Further descriptions of these categories are included in the instructions following this document.

e) Rationale for species and numbers: How did you determine that 1) the species choice was appropriate and 2) the number of animals in each study groups was the minimum number necessary to achieve sound scientific results?

Rhesus macaques (Macaca mulatta) are the most commonly studied species of macaque, and a vast amount of background information exists for this species. In addition, the animals are believed to be the most adaptable to prolonged restraint, by the conventional wisdom of workers in the field. The number of animals is an upper-bound estimate derived from the following constraints: 1) Each new project requires two animals, but if a result appears variable across animals, an additional animal will be added to the study. 2) We currently have 5 animals in-house, two of which are going to be terminated in the near future, for reasons described in section (k). 3) We plan to start a minimum of 3 new projects in the foreseeable future, but it can be anticipated that more projects than this will be initiated during the period this protocol remains in effect. 4) Each monkey can be used on multiple projects, since these frequently involve recording from the same brain region. Typically, each monkey will be used on 2 projects, but this number can be higher or lower, depending on the needs for publication and on the practicalities of the brain areas being investigated in each experiment. To estimate the total number of monkeys, I guessed that 6 new projects will be initiated, each requiring one monkey:

4 existing + 6 new = 10 total animals

f) Surgery: If the project involves survival surgery, where will the surgery be conducted?

Building: CRPRC
Room: primary surgical suite

Who will be the surgeon? Dr. / trained lab personnel

g) Anesthetics, Analgesics, Tranquilizers, Neuromuscular blocking agents:

Post procedural analgesics should be given whenever there is possibility of pain or discomfort that is more than slight or momentary. If postoperative analgesics are not to be given, justify the practice under part (i) below.

Provide the following information about any of these drugs that you intend to use in this project.

<table>
<thead>
<tr>
<th>Species</th>
<th>Drug</th>
<th>Dose (mg/kg)</th>
<th>Route</th>
<th>When and how often will it be given?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhesus</td>
<td>Atropine</td>
<td>0.05</td>
<td>s.c.</td>
<td>anesthesia induction</td>
</tr>
<tr>
<td>Rhesus</td>
<td>Ketamine</td>
<td>10</td>
<td>i.m.</td>
<td>anesthesia induction</td>
</tr>
<tr>
<td>Rhesus</td>
<td>Telazol</td>
<td>5-8</td>
<td>i.m.</td>
<td>anesthesia induction</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>-----</td>
<td>------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Rhesus</td>
<td>Isoflurane</td>
<td>0.8-2.0%</td>
<td>inhalation</td>
<td>To effect, 1-5 hr. (surgery)</td>
</tr>
<tr>
<td>Rhesus</td>
<td>Lactated Ringers</td>
<td>5ml/lb/hr</td>
<td>i.v.</td>
<td>once, surgery</td>
</tr>
<tr>
<td>Rhesus</td>
<td>Keflin</td>
<td>40</td>
<td>i.v.</td>
<td>Once, per surgery</td>
</tr>
<tr>
<td>Rhesus</td>
<td>Cephazolin</td>
<td>20</td>
<td>i.m.</td>
<td>t.i.d. 5 days after surgery</td>
</tr>
<tr>
<td>Rhesus</td>
<td>oxymorphone</td>
<td>0.15</td>
<td>i.m.</td>
<td>t.i.d. 1-3 days @ vet’s discretion</td>
</tr>
<tr>
<td>Rhesus</td>
<td>Lidocaine</td>
<td>spray</td>
<td>topical</td>
<td>Once, to facilitate endotracheal tube placement</td>
</tr>
<tr>
<td>Rhesus</td>
<td>triple antibiotic ointment (ophthalmic)</td>
<td>~ 0.1 ml</td>
<td>topical</td>
<td>after eye surgery</td>
</tr>
</tbody>
</table>

h) Neuromuscular blocking agents can conceal inadequate anesthesia and therefore require special justification. If you are using a neuromuscular blocking agent, please complete the following:

Why do you need to use a neuromuscular blocking agent?

What physiologic parameters are monitored during the procedure to assess adequacy of anesthesia?

Under what circumstances will incremental doses of anesthetics-analgesics be administered?

i) Adverse effects:

Describe any potential adverse effects of the experiment on the animals (such as pain, discomfort; reduced growth, fever, anemia, neurological deficits; behavioral abnormalities or other clinical symptoms of acute or chronic distress or nutritional deficiency)

1. Minor discomfort from guide tube insertion. The brain contains no nociceptors, and cannot feel the presence of the electrode, but the dura mater is richly innervated, and the guide tube passes through it.
2. Surgical recovery causes unavoidable distress.
4. Chronic implants. These are necessary for alert primate recording, and expose the animal to some risk of infection. Also, these implants occasionally suffer fractures, where either a recording cylinder or the head post breaks off from the dental acrylic.

How will the signs listed above be ameliorated or alleviated? If signs are not to be alleviated or ameliorated by means of post-operative analgesics or other means, explain why this is necessary.

1. If the animals show any signs of distress, local anesthetics are topically applied prior to insertion of the guide tube.
2. Post-surgical analgesics are given for 1-3 days.
3. Diet supplements, including Prima-treats, vitamins, and daily fruit are all given to ensure adequate nutrition. Periodic blood work-ups by the CRPRC also help to ensure the animals good overall health.
4. The condition of the implants is monitored daily. The cylinders are flushed at least three times a week, and often daily, with saline and/or dilute disinfectants (“Novaisan”, 1-2%; Betadine solution, 1%). All procedures comply with CRPRC S.O.P. II-33. If infection develops despite this prophylaxis, then veterinary assistance sought. Typically, and X-ray
image is taken to evaluate whether the bone is infected, and cultures of any exudate are taken. Thereupon the best treatment is decided, and these can range from a course of systemic antibiotic to complete removal of the implant and prolonged recovery to allow for bone regrowth. In the event of a fracture in the implant, appropriate action is taken. If the fracture only involves acrylic, then repairs are made under ketamine anesthesia. If the fracture exposes covered tissue, then a temporary cap is fitted under ketamine anesthesia, and an emergency surgery is scheduled as soon as possible at the CRPRC to repair the implant.

Note: if any unanticipated adverse effects not described above do occur during the course of the study, a complete description of those effects and the steps taken to mitigate them must be submitted to the committee as an amendment to this protocol.

Is death an endpoint in your experimental procedure? [] Yes [x] No

(Note: "Death as an endpoint" refers to acute toxicity testing, assessment of virulence of pathogens, neutralization tests for toxins, and other studies in which animals are not euthanized, but die as a direct result of the experimental manipulation). If death is an endpoint, explain why it is not possible to euthanize the animals at an earlier point in the study. If you can euthanize the animals at an earlier point, describe the clinical signs which will dictate that an animal will be euthanized.

j) Literature search for alternatives and unnecessary duplication:

This section is specifically required by Federal law. You are required to conduct a literature search to determine that either 1) there are no alternative methodologies by which to conduct this study, or 2) there are alternative methodologies, but these are not appropriate for your particular study. “Alternative methodologies” refers to reduction, replacement, and refinement (the three R’s) of animal use, not just animal replacement. You must also show that the study is not unnecessarily duplicative of other studies.

What was the date on which you conducted this search? 4/11/01

List the databases searched or other sources consulted (there should be more than one). Include the years covered by the search.

<table>
<thead>
<tr>
<th>Database Name</th>
<th>Years Covered</th>
<th>Keywords / Search Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medline</td>
<td>95-01</td>
<td>neurophysiology & method & alternative</td>
</tr>
<tr>
<td>Medline</td>
<td>95-01</td>
<td>visual & behavior & method & alternative</td>
</tr>
<tr>
<td>Biosis</td>
<td>93-00</td>
<td>alternative & method & neurophys#</td>
</tr>
<tr>
<td>Biosis</td>
<td>93-00</td>
<td>alternative & method & visual & behavior</td>
</tr>
</tbody>
</table>

What were your findings with respect to alternative methodologies?

Each search returned from 1-29 items. These fell into two categories: "methods" papers dedicated to specific questions other than those posed in these experiments, and results-oriented papers using traditional methods. No papers covering alternative methods suitable for this study were discovered.

Has this study been previously conducted? [] Yes [x] No

If the study has been conducted previously, explain why it is scientifically necessary to replicate the experiment.

k) Disposition of animals: At what point in the study, if any, will the animals be euthanized?
1. When we need to recover the locations of recording sites for publication.
2. When the relevant areas of the brain have been sampled completely.

l) Methods of euthanasia: Even if your study does not involve killing the animals, you should show a method that you would use in the event of unanticipated injury or illness. If anesthetic overdose is the method, show the agent, dose, and route.

<table>
<thead>
<tr>
<th>Species</th>
<th>Method</th>
<th>Drug</th>
<th>Dose (mg/kg)</th>
<th>route</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. mulatta</td>
<td>perfusion</td>
<td>pentobarbital</td>
<td>60 mg/kg</td>
<td>i.v.</td>
</tr>
</tbody>
</table>

m) Surplus animals: What will you do with any animals not euthanized at the conclusion of the project?

No surplus animals are anticipated.
n) Project Roster: Please provide the names of all the individuals who will work with animals on this project. This page will not be made available to the public. Give either the University Employee ID # or a valid UC Davis email address so that we can document training and occupational health compliance for regulatory agencies. Include all investigators, student employees, post-doctoral researchers, staff research associates, post-graduate researchers and laboratory assistants who will actually work with the animals. You don't need to include the staff of the vivarium in which your animals will be housed.

The principal investigator is responsible for keeping this roster current. If any staff is added or subtracted from this project, you must amend the protocol by sending the campus veterinarian a memo describing any changes.

<table>
<thead>
<tr>
<th>Last Name</th>
<th>First Name</th>
<th>Middle Name</th>
<th>UC ID Number or SSN</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Occupational Health Program:
Supervisors must enroll their employees in the campus Occupational Health Program if the workers are at increased risk of illness or injury (such as allergy, physical injury, or infectious disease) because of their work. Enroll workers by having them complete an "Animal Contact History Form", available from Employee Health Services (phone 752-2330). For further information, visit our web site at http://clueless.ucdavis.edu/health/ or read the UC Davis Policy & Procedure Manual 290-25.

Training:
Supervisors are responsible for insuring that their employees are adequate trained, both in the specifics of their job and in the requirements of the Federal Animal Welfare Act. EH&S offers free, basic wet labs in laboratory animal handling and techniques, and lecture format classes in the requirements of the Animal Welfare Act. To schedule a class for your unit, contact EH&S at 2-2364. Autotutorials are also available on the world wide web at http://clueless.ucdavis.edu/.
** Assurances for the Humane Care and Use of Vertebrate Animals: **

** Principal Investigator's Statement:**

I have read and agree to abide by the **UC Davis Policy and Procedure Manual section 290-30 (Animal Use and Care)**. This project will be conducted in accordance with the **ILAR Guide for the Care and Use of Laboratory Animals**, and the **UC Davis Animal Welfare Assurance** on file with the US Public Health Service. (These documents are available from the Campus Veterinarian and at http://ehs.ucdavis.edu/). I will abide by all Federal, state and local laws and regulations dealing with the use of animals in research.

I will advise the Animal Use and Care Administrative Advisory Committee in writing of any significant changes in the procedures or personnel involved in this project.

<table>
<thead>
<tr>
<th>Principal Investigator</th>
<th>Rank / Title</th>
<th>Date</th>
</tr>
</thead>
</table>

** Committee Use Only Below **

** Conditions necessary for Committee Approval:**

<table>
<thead>
<tr>
<th>**</th>
<th>**</th>
<th>**</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

Final Disposition of this protocol:

- [] Approved
- [] Not Approved
- [] Withdrawn by Investigator

Date of Action: _____ / _____ / _____

I verify that the Institutional Animal Care and Use Committee of the University of California, Davis, acted on this protocol as shown above.

<table>
<thead>
<tr>
<th>Campus Veterinarian</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>